

Constructive algorithm for path-width of matroids Sang-il Oum

Joint work with Jisu Jeong (KAIST) Eun Jung Kim (CNRS-LAMSADE)

Department of Mathematical Sciences

GROW2015 2015.10.13 Aussois, France

Arranging vectors: A problem in coding theory

- Input: n vectors v_1, v_2, \ldots, v_n in \mathbb{F}^m .
- Goal: Find the minimum k such that there is a linear layout $v_1, v_2, ..., v_n$ of the vectors such that dim $(\langle v_1 \rangle \cap \langle v_2, v_3, ..., v_n \rangle) \leq k$, dim $(\langle v_1, v_2 \rangle \cap \langle v_3, ..., v_n \rangle) \leq k$, ... dim $(\langle v_1, v_2, v_3, ..., v_{n-1} \rangle \cap \langle v_n \rangle) \leq k$.
- Minimum such k = "Trellis State-Complexity of a linear code" or "Trellis-Width" (coding theory) or "Path-width" (matroid theory) — matroid representable over F

Computing

trellis-width (or path-width)

- Deciding trellis-width≤k is NP-complete (Kashyap07, 08)
- What if k is fixed? Remark in Kashyap's paper (07)

4 Concluding Remarks

The main contribution of this paper was to show that the decision problem TREL-LIS STATE-COMPLEXITY is NP-complete, thus settling a long-standing conjecture. Now, the situation is rather different if we consider a variation of the problem in which the integer w is *not* taken to be a part of the input to the problem. In other words, consider the following problem:

Problem: WEAK TRELLIS STATE-COMPLEXITY Let \mathbb{F}_q be a fixed finite field, and let w be a fixed positive integer.

Instance: An $m \times n$ generator matrix for a linear code \mathcal{C} over \mathbb{F}_q .

Question: Is there a coordinate permutation of C that yields a code C' whose minimal trellis has state-complexity at most w?

YES

There is good reason to believe that this problem is solvable in polynomial time.

For fixed k?

- WQO(Well-quasi-ordering) Conjecture: F-representable matroids are well-quasi-ordered by the minor relation. (no infinite antichain w.r.t. minors)
- If true, then for every class X of F-representable matroids closed under taking minors, there are finitely many F-representable matroids M₁, M₂, ..., M_n such that M is in X iff none of M₁, M₂,..., M_n is a minor of M.
- ∗ Theorem (Geelen, Gerards, Whittle; 2012+): WQO Conj is true for finite F.
- Enough to check whether an input matroid has some minors in the finite list (which can be done in poly time for matroids of bounded branch-width, shown by Hlineny.)
- Trouble: 1. No algorithm known to construct the list of forbidden minors.
 2. Even if you know the list, this doesn't provide a linear ordering!

Known algorithms for path-width/branch-width of matroids

- STEP 1: Find an <u>approximate</u> branch-decomposition (Hlineny 2006; O(n³) algorithm)
- STEP 2: Use the dynamic programming to test all forbidden minors for branchwidth≤k or path-width≤k.
- Branch-width: (the size of each forbidden minor) $\leq (6^{k}-1)/5$ (Geelen, Gerards, Robertson, Whittle 2003)
- <u>Path-width: (#forbidden minors) OPEN!</u>
 No upper bound is known; Finite due to WQO.

- STEP 3: Use step 2 to construct a branch-decomp of width≤k (Hlineny, Oum)
- For path-width, an efficient algorithm exists but we did not know how to construct.

What's new? (1/2)

- Outcome: Fixed Parameter Tractable to decide trellis-width≤k or path-width≤k of F-representable matroids

What's new (2/2) Extension to subspaces

For example, if

V_i=<v_i> for all ii,

 Theorem [Jeong, Kim, O.]
 O(f(k) n³)-time algorithm to find a linear layout V₁, V₂, ..., V_n
 of the input n subspaces of F^m such that dim ((V₁+V₂+...+V_i) ∩ (V_{i+1}+...+V_n))≤k for all i, if it exists (when F is a finite field)

Corollary to

Linear rank-width

- Cut-rank function cutrk_G(X):=rank of X*(V-X) submatrix of the adjacency matrix of a graph G
- Linear rank-width of a graph G:= min k such that ∃linear layout v₁, v₂, ..., v_n of the vertices with cutrk_G({v₁,v₂,...,v_i})≤k for all i.
- NP-complete to decide linear rank-width \leq k.
- THEOREM: For a fixed k,

 $O(n^3)$ -time algorithm to decide linear rank-width \leq k. (NEW)

let V_i=span of the i-th and (i+n)-th column vectors

EASY FACT: 2 * cutrk_G(X)=dim ((Σ {V_i:v_i \in X}) \cap (Σ {V_i:v_i \notin X}))

Path-width of $\{V_1, V_2, \dots, V_n\} = 2^*$ (linear rank-width of G)

Corollary to Linear clique-width

- Linear clique-width= "linearized version of clique-width"
- EASY FACT: If linear rank-width=k, then linear clique-width≤2^k+1.
- NP-complete to decide linear clique-width≤k (when k is not fixed) (Fellows, Rosamond, Rotics, Szeider 2009)
- Corollary: The first approximation algorithm for linear cliquewidth.

For a fixed k, $O(n^3)$ -time algorithm to find a linear clique-width expression of width $\leq 2^k + 1$ or confirms that linear clique-width>k.

Bodlaender-Kloks type algorithm for path-width of "subspaces"

Path-width vs Branch-width of (representable) matroids

Input: v₁, v₂, ..., v_n: vectors in \mathbb{F}^m . (\mathbb{F} : finite field) **Output**: Yes if \exists permutation π of {1,2, ...,n} s.t. ...

Input: v₁, v₂, ..., v_n: vectors in F^m.
 (F: finite field)
Output: Yes if ∃ subcubic tree T with a
 bijection L:{leaves}→{vectors} s.t. ...

Path-decomposition of width≤k

Path-width vs Branch-width of a subspace arrangement

Input: V₁, V₂, ...,V_n: subspaces in \mathbb{F}^m . (\mathbb{F} : finite field) **Output**: Yes if \exists permutation π of {1,2, ...,n} s.t. ...

Input: V₁, V₂, ..., V_n: subspaces in F^m.
 (F: finite field)
Output: Yes if ∃ subcubic tree T with a
bijection L:{leaves}→{subspaces} s.t. ...

Path-decomposition of width≤k

Our algorithm

Input: n subspaces

We will discuss how to provide such a decomposition later

- Assume that we are given a branch-decomposition of width w.
- Task: Do the dynamic programming to enumerate all "partial solutions" of width at most k.

How to run dynamic-programming on a "branch-decomposition of subspaces"

Dynamic programming on a branch-decomposition Underlying space: $M_v := V_2 + V_4 + V_5$ 11 13 Boundary space B_v := ($V_2+V_4+V_5$) \cap ($V_1+V_3+V_6$) B B V Μ 422 Μ

B

B

 M_2

 M_2

B

join

 M_1

expand

shrink

B'-B ⊥ M

Μ

В

B'⊆B

If branchwidth≤w, then we can keep dim (B)≤2w. L S

 M_1

 $M_1/B \perp M_2/B$

L R

KAIST 수리과학과

What do we keep?

Extra connectivity not shown in B

 $\lambda_{3} = \dim(S_{1} + S_{2} + S_{3}) \cap (S_{4} + S_{5} + S_{6} + S_{7}) - \dim((S_{1} + S_{2} + S_{3}) \cap (S_{4} + S_{5} + S_{6} + S_{7}) \cap B)$

For (M,B), we only need to keep a sequence of (L,R,λ) in order to determine whether we have a path-decomposition

B-trajectory for a subspace B

- statistic:=triple (L,R,λ) of subspaces L, R of B and λ≥0.
- **B-trajectory**:=a finite sequence of statistics Γ =a₁,a₂,...,a_n such that $L(a_1) \subseteq L(a_2) \subseteq ... \subseteq L(a_n),$ $R(a_1) \supseteq R(a_2) \supseteq ... \supseteq R(a_n).$
- Width of a B-trajectory:= max λ.
- The canonical B-trajectory of a path-decomposition (S₁,S₂,...,S_n)

A <u>path-decomposition</u> $(S_1, S_2, \ldots, S_{n-1})$ $X_i := S_1 + S_2 + \ldots + S_i$ $Y_i := S_{i+1} + \ldots + S_{n-1}$ $X_1 \cap B \subseteq X_2 \cap B \subseteq X_3 \cap B \subseteq \ldots \subseteq X_n \cap B$ $Y_1 \cap B \supseteq Y_2 \cap B \supseteq Y_3 \cap B \supseteq \ldots \supseteq Y_n \cap B$ nonnegative integers

How to compress B-trajectories? Typical sequences of Bodlaender and Kloks

- Reducing operation for a sequence of integers: In a sequence a₁,a₂,...,a_n of integers, remove a_j if a_j is between a_i and a_k and i<j<k.
 - $\tau(125392) = (192)$
 - $\tau(13845637) = (1837)$
- A sequence is <u>typical</u> if no further reducing is possible.
- Lemma (Bodlaender and Kloks 1996): (#typical sequences consisting of {0,1,2,...,k})≤ (8/3)2^{2k}.

How to compress B-trajectories? "Compact" B-trajectories

- Reducing operation for a B-trajectory Γ=a₁,a₂,...,a_n
 remove a_j if
 L(a_i)=L(a_k), R(a_i)=R(a_k), and
 λ(a_j) is between λ(a_i) and λ(a_k) and i<j<k.
- A B-trajectory is <u>compact</u> if no further reducing is possible. The compactification τ(Γ) is a compact B-trajectory obtained by reducing from Γ.

 a_k

ai

• Lemma: if dim(B)=w and $|\mathbb{F}|=q$, then (#compact B-trajectories of width $\leq k$) $\leq 2^{9w+2}q^{w(w-1)}2^{2(2w+1)k}$

What to store during dynamic programming? "Full Sets"

- For a subspace arrangement *Y*={V₁,V₂,..,V_n}, the full set FS_k(*Y*,B):=set of all B-trajectories of width≤k that are better than some B-trajectories, realizable in *Y*.
- $FS_k(\gamma, \{0\}) \neq \emptyset$ if and only if path-width $\leq k$.

We aim to compute $FS_k(\gamma, \{0\})$ by the dynamic programming

Computing the Full Set

Underlying space: $M_v := V_2 + V_4 + V_5$ Boundary space $B_v := (V_2 + V_4 + V_5) \cap (V_1 + V_3 + V_6)$ At each leaf v, compute FS(M_v , B_v) "easy" At each internal node v with two children x and y,

- compute FS(Mx, Bx+By) from FS(Mx, Bx)
- compute FS(My, Bx+By) from FS(My, By)
- compute FS(M_v, B_x+B_y) from

45

Expand

Join

Shrink

수리과학과

KAIST

- $FS(M_x, B_x+B_y)$ and $FS(M_y, B_x+B_y)$
- compute $FS(M_v, B_v)$ from $FS(M_v, B_x+B_y)$

O(n)-time to compute $FS_k(\gamma, \{0\})$.

How to provide an initial

"approximate" branch-decomposition

- Method 1: Iterative compression; O(n) overhead Modify the output for V₁,...,V_{i-1} of width≤k to be the branch-decomposition of width≤k+1. TOTAL: O(n⁴) time (simpler but slower)
- Method 2: Use the algorithm by Hlineny and Oum (2008) that provides a branch-decomposition of width≤k in O(n³)-time (faster) TOTAL: O(n³) time.

Concluding remarks

- By backtracking, we can construct a linear layout of width \leq k.
- Similar idea works for rank-width of graphs and branch-width of matroids representable over a fixed finite field.
- Two bottlenecks for a faster algorithm:
 - Finding an approximate branch-decomposition.
 - Preprocessing the approximate branch-decomposition to make it more useful for dynamic programming.
 (e.g. Precompute a basis for each boundary space B)

THANK YOU FOR YOUR ATTENTION!

