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Minimal separators

Definition
S ⊆ V is a minimal
a, b-separator if S separates a
and b and it is inclusion-minimal
for this property.

Definition
S is a minimal separator of G
there exist vertices a, b s.t. S is a
minimal a, b-separator.
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Potential maximal cliques

Definition
A set of vertices Ω is a potential maximal clique of G if is a
maximal clique in some minimal triangulation of G .

Proposition (Bouchitté, Todinca 2001)

The number of potential maximal cliques is polynomial in the
number of minimal separators.
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Minimal separators and Gpoly
Definition
For a polynomial poly , let Gpoly be the class of graphs such that
G ∈ Gpoly if G has at most poly(n) minimal separators.

Class minimal separators potential maximal cliques

Weakly chordal O(n2) O(n2)

Chordal O(n) O(n)

Polygon-circle O(n2) O(n3)

Circle O(n2) O(n3)

Circular arc O(n2) O(n3)

d-trapezoid O(nd) O(nd+2)
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When the input graph belongs to Gpoly we can find in polynomial
time a Maximum Induced:

• Independent Set, Forest, Path, Matching

• Subgraph With no cycles ≥ l, Outerplanar

• Subgraph With no cycles of length 0 mod l

For t ≥ 0 and P a CMSO property:

Optimal Induced Subgraph for P and t
Input: A graph G = (V ,E )
Output A largest induced subgraph G [F ] s.t.

- tw(G [F ]) ≤ t,

- G [F ] satisfies P.

Theorem (Fomin, Todinca, Villanger, 2015)

Optimal Induced Subgraph for P and t on Gpoly is
solvable in polynomial time.
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Output A largest induced subgraph G [F ] s.t.

- tw(G [F ]) ≤ t,

- G [F ] satisfies P.

Theorem (Fomin, Todinca, Villanger, 2015)

Optimal Induced Subgraph for P and t is solvable time
O(#Potential maximal cliques · nt+cst · f (P, t)).
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In this talk, two extensions:

1) Theorem (Fomin, Liedloff, M., Todinca. SWAT 2014)

Optimal Induced Subgraph for P and t can be solved in
time O∗(4vc) and O∗(1.7347mw).

2) Definition (Gpoly + kv)

G ∈ Gpoly + kv if there exists a set M ⊂ V called modulator,
|M| ≤ k s.t. G −M ∈ Gpoly .

Theorem (Liedloff, M. and Todinca. WG 2015)

Optimal Induced Subgraph for P and t on Gpoly + kv
with parameter k is fixed-parameter tractable, when the modulator
is also part of the input.
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First result

Theorem (Fomin, Todinca, Villanger, 2015)

Optimal Induced Subgraph for P and t is solvable time
O(#Potential maximal cliques · nt+cst · f (P, t)).

Our result:

Theorem
The number of potential maximal cliques is bounded by

• O∗(4vc)

• O∗(1.7347mw)
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Vertex cover

Definition
The vertex cover of a graph G , denoted by vc(G ), is the minimum
number of vertices that cover all edges of the graph.

• The number of minimal separators is bounded by 3vc

• The number of potential maximal cliques is bounded by
O∗(4vc)
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Vertex cover and minimal separators

G

W

S

D1 D2
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Vertex cover and minimal separators

For any vertex cover W

S → (SW ,D1,D2) = W

S = SW ∪ {x ∈ V \W | N(x) intersects both D1 and D2}

Theorem

• Number of minimal separators is O(3vc)

• They can be listed in time O∗(3vc)
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Potential maximal cliques and minimal separators

G

Ω

S
G\(C ∪ Ω)C

x

y
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T

11 / 29



Introduction First result Conclusion 1 Second result Conclusion 2

Potential maximal cliques and minimal separators

G

Ω

S
G\(C ∪ Ω)C

x

y

C ∪ {x , y}

T

11 / 29



Introduction First result Conclusion 1 Second result Conclusion 2

Potential maximal cliques and minimal separators

G

Ω

S
G\(C ∪ Ω)C

x

y

C ∪ {x , y}

T

11 / 29



Introduction First result Conclusion 1 Second result Conclusion 2

Potential maximal cliques and minimal separators

G

Ω

S
G\(C ∪ Ω)C

x

y

C ∪ {x , y}

T

11 / 29



Introduction First result Conclusion 1 Second result Conclusion 2

Potential maximal cliques and minimal separators

G

Ω

S
G\(C ∪ Ω)C

x

y

C ∪ {x , y}

T

11 / 29



Introduction First result Conclusion 1 Second result Conclusion 2

Vertex cover and pmc
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Vertex cover and pmc

For any vertex cover W

Ω→ (ΩW ,DR ,DU ,DL) = W

Ω = ΩW

∪{x ∈ V \W | N(x) intersects both DR and (DU ∪ DL)}
∪{x ∈ V \W | N(x) intersects both DU and DL}

Theorem

• Number of potential maximal cliques is O∗(4vc)

• They can be listed in time O∗(4vc)
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Modular width

Definition
The modular width mw(G ) can be defined as the maximum degree
of a prime node in the modular decomposition tree of G

1 2 3 4

5 6

11 21

31

32

41

51

52

53

61

• The number of minimal separators is bounded by
O∗(1.6181mw),

• The number of potential maximal cliques is bounded by
O∗(1.7347mw).
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Modular width and minimal separators

1 3 42

5 6

11 21

31

32

41

51

52

53

61

H G

Theorem (Fomin, Villanger (2010))

Every n-vertex graph has O(1.6181n) minimal separators and
O(1.7347n) potential maximal cliques.
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Modular width and minimal separators
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Theorem (Fomin, Villanger (2010))

Every n-vertex graph has O(1.6181n) minimal separators and
O(1.7347n) potential maximal cliques.
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Conclusion

Theorem
Optimal Induced Subgraph for P and t can be solved in
time O∗(4vc) and O∗(1.7347mw)

Also..

• (Weighted) Treewidth,

• (Weighted) Minimum fill in,

• Treelength.

Are solvable in time O∗(# pmc) ([Gysel], [Lokshtanov],..)
(then in time O∗(4vc) and O∗(1.7347mw)).

• Running times that are single exponential in the parameter.

• This result covers both sparse and dense families of graphs.
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Second result

Definition (Gpoly + kv)

G ∈ Gpoly + kv if there exists a set M ⊂ V called modulator,
|M| ≤ k s.t. G −M ∈ Gpoly .

Theorem (Liedloff, M. and Todinca. WG 2015)

Optimal Induced Subgraph for P and t on Gpoly + kv
with parameter k is fixed-parameter tractable, when the modulator
is also part of the input.
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The tools

• Tools from [Fomin, Villanger, 2010] and [Fomin, Todinca, Villanger,
2015] for computing a Maximum induced subgraph of
treewidth t:

• Decompositions with minimal separators.
• Potential maximal cliques
• Dynamic programming over all minimal tree decompositions of

the input graphs, using potential maximal cliques.

• Results [Bodlaender, Kloks, 1996]
• Given a graph G and a tree decomposition of width at most

k + t, determine if G has treewidth t in time O(f (t + k)n),

with f (x) = 2O(x3 log(x)).
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Decomposing with minimal separators
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Decomposing with minimal separators

Theorem (Parra, Schaeffler 97)

Decomposing through minimal
separators → minimal tree
decompositions.
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Potential maximal cliques

Definition
A set of vertices Ω is a potential maximal clique of G if is a
maximal clique in some minimal triangulation of G .

Definition
A set of vertices Ω is a potential maximal clique of G if there is a
minimal tree decomposition TG of G such that Ω is a bag in TG .

Proposition (Bouchitté, Todinca 2001)

The number of potential maximal cliques is polynomial in the
number of minimal separators.
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Dynamic programming over minimal separators. . .

Maximum induced subgraph of treewidth t on Gpoly

S : minimal separator of G
C : component of G − S
T : a subset of S of size ≤ t + 1

OPT (S ,C ,T ) the size of the largest partial
solution G [F ] s.t.

• F ⊆ S ∪ C

• T = F ∩ S

TS

C
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. . . and potential maximal cliques

C

S T

Ω

S1 S2

C1 C2

T’

OPT (S ,C ,T ):

• guess the potential maximal
clique Ω splitting S ∪ C

• and T ⊆ T ′ the bag of F
that intersects Ω,
|T ′| ≤ t + 1.

Running time: O(nt+cst · #potential maximal cliques)
Key lemma [Fomin, Villanger 2010]: we don’t miss solutions.
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Dynamic programming over minimal separators. . .

Maximum induced subgraph of treewidth t on Gpoly + kv

FM : A subset of the modulator of size k ′.
S : minimal separator of G ′

C : component of G ′ − S
T : a subset of S of size ≤ t + 1

OPT (S ,C ,T ) the size of the largest partial
solution G [F ] s.t.

• FM = F ∩M

• F\M ⊆ S ∪ C

• T = F ∩ S

T

FC

S

M FM

This way we build a tree decomposition of G [F ] of width ≤ t + k ′
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[Bodlaender, Kloks, 1996]:

• Algorithm that takes as input a graph with a tree
decomposition of width at most t + k and decides if this graph
has treewidth t in time O(f (t + k)n), with f (x) = 2O(x3 log(x))

• Full set of characteristics: Set of constant size that encodes
the decision in a partial solution

• if two partial solutions are glued, then the characteristic of the
resulting graph can be computed from the characteristics of
each part.
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Dynamic programming over minimal separators. . .

FM : A subset of the modulator of size k ′.
S : minimal separator of G ′

C : component of G ′ − S
T : a subset of S of size ≤ t + 1
c : a characteristic of (tw(G ) ≤ t)

∧ P

OPT (S ,C ,T , c) the size of the largest partial
solution G [F ] s.t.

• FM = F ∩M

• F\M ⊆ S ∪ C

• T = F ∩ S , |T | ≤ t

• G [F ] has characteristic c

T

FC

S

M FM
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• G [F ] has characteristic c

T

FC

S

M FM

Running time: O(nt+cst · f (t + k ,P)· #potential maximal cliques)
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To sum up

Theorem
Optimal Induced Subgraph for P and t on Gpoly + kv is
solvable in time O(nt · poly ′(n) · f (t + k,P)) when the modulator
is also part of the input.

t P f

any any tower of exponentials

any none 2O((t+k)3 log(t+k))

0 none 2O(k)

1 none 2O(k log(k))
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To sum up

Theorem
Optimal Induced Subgraph for P and t on Gpoly + kv is
solvable in time O(nt · poly ′(n) · f (t + k,P)) when the modulator
is also part of the input.

t P f

any any tower of exponentials

any be connected 2O((t+k)3 log(t+k))

0 none 2O(k)

1 be connected 2O(k log(k))
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Discussion

What if the modulator is not a part of the input?

Deletion to Gpoly
Input: A graph G = (V ,E ) and a constant k
Parameter: k
Output: A set M ⊆ V of size at most k s.t. G −M belongs to
Gpoly .

[Heggernes, van’t Hof, Jansen, Kratsch, Villanger, 2013]

• Weakly chordal +kv is W [2]-Hard

[Cao, Marx, 2014]

• Chordal +kv is FPT
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Thank you!
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