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Minimal separators

Definition
a b C S C Vis a minimal
a, b-separator if S separates a
and b and it is inclusion-minimal
d f for this property.
Definition
g S is a minimal separator of G

there exist vertices a, b s.t. S'is a
h minimal a, b-separator.
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Potential maximal cliques

Definition
A set of vertices €2 is a potential maximal clique of G if is a
maximal clique in some minimal triangulation of G.

Proposition (Bouchitté, Todinca 2001)

The number of potential maximal cliques is polynomial in the
number of minimal separators.



Introduction

Minimal separators and G,y

Definition

For a polynomial poly, let G0y, be the class of graphs such that

G € Gpoly if G has at most poly(n) minimal separators.

] Class \ minimal separators \ potential maximal cliques
Weakly chordal O(n?) O(n?)
Chordal O(n) O(n)
Polygon-circle O(n?) O(n?)
Circle O(n?) O(n3)
Circular arc O(n?) O(n%)
d-trapezoid O(n9) O(n+2?)
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When the input graph belongs to G, we can find in polynomial
time a MAXIMUM INDUCED:

e INDEPENDENT SET, FOREST, PATH, MATCHING
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e SUBGRAPH WITH NO CYCLES OF LENGTH 0 mod /

For t > 0 and P a CMSO property:
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Input: A graph G = (V,E)
Output A largest induced subgraph G[F] s.t.
- tw(GJ[F]) < t,
- G[F] satisfies P.

Theorem (Fomin, Todinca, Villanger, 2015)

OPTIMAL INDUCED SUBGRAPH FOR P AND t is solvable time
O(#POTENTIAL MAXIMAL CLIQUES - n'T<t . (P, t)).
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1)

In this talk, two extensions:

Theorem (Fomin, Liedloff, M., Todinca. SWAT 2014)
OPTIMAL INDUCED SUBGRAPH FOR P AND t can be solved in
time O*(4'¢) and O*(1.7347™").

Definition (Gpop + kVv)

G € Gpoly + kv if there exists a set M C V called modulator,
IM| < kst. G—M e Gy

Theorem (Liedloff, M. and Todinca. WG 2015)

OPTIMAL INDUCED SUBGRAPH FOR P AND t ON Gpopy + kv
with parameter k is fixed-parameter tractable, when the modulator
is also part of the input.
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First result

Theorem (Fomin, Todinca, Villanger, 2015)

OPTIMAL INDUCED SUBGRAPH FOR P AND t is solvable time
O(#POTENTIAL MAXIMAL CLIQUES - n'Tt . (P, t)).

Our result:

Theorem

The number of potential maximal cliques is bounded by
° O*(4VC)
o O*(1.7347T™Y)
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Vertex cover

Definition
The vertex cover of a graph G, denoted by vc(G), is the minimum
number of vertices that cover all edges of the graph.

e The number of minimal separators is bounded by 3"¢

e The number of potential maximal cliques is bounded by
O*(4VC)
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For any vertex cover W

S (S, D, D) =W
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Vertex cover and minimal separators

For any vertex cover W

S (S, D, D) =W

S=5S"U{xe V\ W | N(x) intersects both D; and D,}

Theorem

e Number of minimal separators is O(3"¢)
e They can be listed in time O*(3")
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Vertex cover and pmc

For any vertex cover W

Q— (QY,Dg,Dy, D)) =W

Q = %
U{x € V\ W | N(x) intersects both Dg and (Dy U D)}
U{x € V\ W | N(x) intersects both Dy and D, }

13 /29



Introduction First result Conclusion 1 Second result Conclusion 2

Vertex cover and pmc

For any vertex cover W

Q— (QY,Dg,Dy,D)) = W

Q = %
U{x € V\ W | N(x) intersects both Dg and (Dy U D)}
U{x € V\ W | N(x) intersects both Dy and D, }

Theorem

e Number of potential maximal cliques is O*(4")
o They can be listed in time O*(4°)
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Modular width
Definition
The modular width mw(G) can be defined as the maximum degree
of a prime node in the modular decomposition tree of G

e The number of minimal separators is bounded by
0*(1.6181™Y),

e The number of potential maximal cliques is bounded by
O*(1.7347™V).

14 /29
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Modular width and minimal separators

G
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Modular width and minimal separators

Theorem (Fomin, Villanger (2010))

Every n-vertex graph has O(1.6181") minimal separators and
O(1.7347") potential maximal cliques.

15/29
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Conclusion

Theorem
OPTIMAL INDUCED SUBGRAPH FOR P AND t can be solved in
time O*(4"¢) and O*(1.7347™")
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Conclusion

Theorem
OPTIMAL INDUCED SUBGRAPH FOR P AND t can be solved in
time O*(4"¢) and O*(1.7347™")

Also..
e (Weighted) TREEWIDTH,
e (Weighted) MINIMUM FILL IN,
e TREELENGTH.
Are solvable in time O*(# pmc) ([Gysel], [Lokshtanov],..)

(then in time O*(4¥¢) and O*(1.7347™")).

e Running times that are single exponential in the parameter.

e This result covers both sparse and dense families of graphs.

16
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Second result

Definition (Gpol + kVv)

G € Gpoly + kv if there exists a set M C V called modulator,
IM| < kst. G—M e Gpgyy.

Theorem (Liedloff, M. and Todinca. WG 2015)

OPTIMAL INDUCED SUBGRAPH FOR P AND t ON Gpopy + kv
with parameter k is fixed-parameter tractable, when the modulator
is also part of the input.
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The tools

e Tools from [Fomin, Villanger, 2010] and [Fomin, Todinca, Villanger,
2015] for computing a MAXIMUM INDUCED SUBGRAPH OF
TREEWIDTH t:

e Decompositions with minimal separators.

e Potential maximal cliques

e Dynamic programming over all minimal tree decompositions of
the input graphs, using potential maximal cliques.

e Results [Bodlaender, Kloks, 1996]

e Given a graph G and a tree decomposition of width at most
k + t, determine if G has treewidth t in time O(f(t + k)n),
with £(x) = 20(<leg(x))

19/29
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Decomposing with minimal separators
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Decomposing with minimal separators
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Decomposing with minimal separators
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Decomposing with minimal separators

Theorem (Parra, Schaeffler 97)

Decomposing through minimal
separators — minimal tree
decompositions.

20/29



Introduction First result Conclusion 1 Second result Conclusion 2

Potential maximal cliques

Definition
A set of vertices €2 is a potential maximal clique of G if is a
maximal clique in some minimal triangulation of G.

Definition

A set of vertices €2 is a potential maximal clique of G if there is a
minimal tree decomposition TG of G such that Q is a bag in TG.
Proposition (Bouchitté, Todinca 2001)

The number of potential maximal cliques is polynomial in the
number of minimal separators.

21/29
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Dynamic programming over minimal separators. . .

MAXIMUM INDUCED SUBGRAPH OF TREEWIDTH t ON gpo/y

= )

S: minimal separator of G S

C: component of G — S
T: a subset of S of size <t—+1

OPT(S, C, T) the size of the largest partial
solution G[F] s.t.

e FCSUC
e T=FNS

22/29
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...and potential maximal cliques

Y \/
' ' OPT(S,C, T):
C v e guess the potential maximal
clique Q splitting SU C
Q

e and T C T’ the bag of F
that intersects Q,

|T'|<t+1.
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...and potential maximal cliques

OPT(S,C, T):
e guess the potential maximal
clique € splitting SU C
e and T C T’ the bag of F
that intersects €2,
T <t+1.

OPT(Sl, G, TN 51) + OPT(Sg, G, TN 52) -+ ‘T’\{Sl U 52}‘
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e and T C T’ the bag of F
that intersects ,
T <t+1.

OPT(S,C,T) =

OPT(S51,C, T'NnS
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... and potential maximal cliques

OPT(S,C, T):
e guess the potential maximal
clique Q splitting SU C
e and T C T’ the bag of F
that intersects ,
T <t+1.

OPT(S,C,T) =

max (OPT(Sl, G, TN 51)
SCQCCUS, TCT'CQ
+OPT(52, G, TN 52) + ‘T’\{Sl U 52}‘)

Running time: O(n'* <. #potential maximal cliques)

Key lemma [Fomin, Villanger 2010]: we don’t miss solutions.
23 /29
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Dynamic programming over minimal separators. . .

MAXIMUM INDUCED SUBGRAPH OF TREEWIDTH t ON Gpop, + kv

FM. A subset of the modulator of size k'. M .
S: minimal separator of G’

C: component of G' — S S T
T: a subset of S of size < t+1 /

OPT (S, C, T) the size of the largest partial
solution G[F] s.t. C F

e FM=FnM
e FAMCSUC
e T=FNS
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Dynamic programming over minimal separators. . .

MAXIMUM INDUCED SUBGRAPH OF TREEWIDTH t ON Gpop, + kv

FM. A subset of the modulator of size k'. M E@
S: minimal separator of G’

C: component of G' — S S T
T: a subset of S of size < t+1 /

OPT(S, C, T) the size of the largest partial
solution G[F] s.t. C F

e FM=FnM
e FAMCSUC
e T=FNS

This way we build a tree decomposition of G[F] of width < ¢+ K’

24 /29
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[Bodlaender, Kloks, 1996]:

e Algorithm that takes as input a graph with a tree
decomposition of width at most t + k and decides if this graph
has treewidth t in time O(f(t + k)n), with f(x) = 200 log(x)

25 /29



Second result

[Bodlaender, Kloks, 1996]:

e Algorithm that takes as input a graph with a tree
decomposition of width at most t + k and decides if this graph
has treewidth t in time O(f(t + k)n), with f(x) = 200 log(x)

e Full set of characteristics: Set of constant size that encodes
the decision in a partial solution

25 /29



Second result

[Bodlaender, Kloks, 1996]:

e Algorithm that takes as input a graph with a tree
decomposition of width at most t + k and decides if this graph
has treewidth t in time O(f(t + k)n), with f(x) = 200 log(x)

e Full set of characteristics: Set of constant size that encodes
the decision in a partial solution

o if two partial solutions are glued, then the characteristic of the
resulting graph can be computed from the characteristics of
each part.

25 /29
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Dynamic programming over minimal separators. . .

FM. A subset of the modulator of size k'.

S: minimal separator of G’ M

C: component of G' — S
T: asubset of S of size <t—+1

S a——
c: a characteristic of (tw(G) < t) )
OPT (S, C, T,c) the size of the largest partial
solution G[F] s.t. C F

e FM=FnMm
e FFMCSUC
e T=FNS,|T|<t

e G[F] has characteristic ¢
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To sum up

Theorem
OPTIMAL INDUCED SUBGRAPH FOR P AND t ON Gpopy + kv is

solvable in time O(n* - poly’(n) - f(t + k, P)) when the modulator
is also part of the input.

Lt [ P ] f |
any any | tower of exponentials
any | none 2(9((t+k)3 log(t+k))

none 20(K)
1 | none 20 (klog(k))
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