FPT results through potential maximal cliques

Pedro Montealegre
in collaboration with
Fedor V. Fomin, Mathieu Liedloff, Ioan Todinca

Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France

GROW 2015, Aussois, France October 15, 2015

Minimal separators

Definition
$S \subseteq V$ is a minimal
a, b-separator if S separates a and b and it is inclusion-minimal for this property.

Definition
S is a minimal separator of G there exist vertices a, b s.t. S is a minimal a, b-separator.

Minimal separators

Definition
$S \subseteq V$ is a minimal
a, b-separator if S separates a and b and it is inclusion-minimal for this property.

Definition
S is a minimal separator of G there exist vertices a, b s.t. S is a minimal a, b-separator.

Potential maximal cliques

Definition

A set of vertices Ω is a potential maximal clique of G if is a maximal clique in some minimal triangulation of G.

Proposition (Bouchitté, Todinca 2001)

The number of potential maximal cliques is polynomial in the number of minimal separators.

Minimal separators and $\mathcal{G}_{\text {poly }}$

Definition

For a polynomial poly, let $\mathcal{G}_{\text {poly }}$ be the class of graphs such that $G \in \mathcal{G}_{\text {poly }}$ if G has at most poly (n) minimal separators.
Class \quad minimal separators \quad potential maximal cliques

Weakly chordal	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{2}\right)$
Chordal	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Polygon-circle	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$
Circle	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$
Circular arc	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$
d-trapezoid	$\mathcal{O}\left(n^{d}\right)$	$\mathcal{O}\left(n^{d+2}\right)$

When the input graph belongs to $\mathcal{G}_{\text {poly }}$ we can find in polynomial time a Maximum Induced:

- Independent Set, Forest, Path, Matching
- Subgraph With no cycles $\geq I$, Outerplanar
- Subgraph With no cycles of length 0 mod $/$

When the input graph belongs to $\mathcal{G}_{\text {poly }}$ we can find in polynomial time a Maximum Induced:

- Independent Set, Forest, Path, Matching
- Subgraph With no cycles $\geq I$, Outerplanar
- Subgraph With no cycles of length 0 mod $/$

For $t \geq 0$ and \mathcal{P} a CMSO property:
Optimal Induced Subgraph for \mathcal{P} and t
Input: A graph $G=(V, E)$
Output A largest induced subgraph $G[F]$ s.t.

- $t w(G[F]) \leq t$,
- $G[F]$ satisfies \mathcal{P}.

When the input graph belongs to $\mathcal{G}_{\text {poly }}$ we can find in polynomial time a Maximum Induced:

- Independent Set, Forest, Path, Matching
- Subgraph With no cycles $\geq I$, Outerplanar
- Subgraph With no cycles of length 0 mod $/$

For $t \geq 0$ and \mathcal{P} a CMSO property:
Optimal Induced Subgraph for \mathcal{P} and t
Input: A graph $G=(V, E)$
Output A largest induced subgraph $G[F]$ s.t.

- $t w(G[F]) \leq t$,
- $G[F]$ satisfies \mathcal{P}.

Theorem (Fomin, Todinca, Villanger, 2015)
Optimal Induced Subgraph for \mathcal{P} and t on $\mathcal{G}_{\text {poly }}$ is solvable in polynomial time.

When the input graph belongs to $\mathcal{G}_{\text {poly }}$ we can find in polynomial time a Maximum Induced:

- Independent Set, Forest, Path, Matching
- Subgraph With no cycles $\geq I$, Outerplanar
- Subgraph With no cycles of length 0 mod $/$

For $t \geq 0$ and \mathcal{P} a CMSO property:
Optimal Induced Subgraph for \mathcal{P} and t
Input: A graph $G=(V, E)$
Output A largest induced subgraph $G[F]$ s.t.

- $t w(G[F]) \leq t$,
- $G[F]$ satisfies \mathcal{P}.

Theorem (Fomin, Todinca, Villanger, 2015)
Optimal Induced Subgraph for \mathcal{P} and t is solvable time $\mathcal{O}\left(\#\right.$ Potential maximal cliques $\left.\cdot n^{t+c s t} \cdot f(\mathcal{P}, t)\right)$.

In this talk, two extensions:

1) Theorem (Fomin, Liedloff, M., Todinca. SWAT 2014) Optimal Induced Subgraph for \mathcal{P} and t can be solved in time $\mathcal{O}^{*}\left(4^{\text {vc }}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$.
2) Definition $\left(\mathcal{G}_{\text {poly }}+k v\right)$
$G \in \mathcal{G}_{\text {poly }}+k v$ if there exists a set $M \subset V$ called modulator, $|M| \leq k$ s.t. $G-M \in \mathcal{G}_{\text {poly }}$.

Theorem (Liedloff, M. and Todinca. WG 2015)
Optimal Induced Subgraph for \mathcal{P} and t on $\mathcal{G}_{\text {poly }}+k v$ with parameter k is fixed-parameter tractable, when the modulator is also part of the input.

First result

Theorem (Fomin, Todinca, Villanger, 2015)
Optimal Induced Subgraph for \mathcal{P} and t is solvable time $\mathcal{O}\left(\#\right.$ Potential maximal cliques $\left.\cdot n^{t+c s t} \cdot f(\mathcal{P}, t)\right)$.

Our result:
Theorem
The number of potential maximal cliques is bounded by

- $\mathcal{O}^{*}\left(4^{v c}\right)$
- $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$

Vertex cover

Definition

The vertex cover of a graph G, denoted by $\mathrm{vc}(G)$, is the minimum number of vertices that cover all edges of the graph.

- The number of minimal separators is bounded by 3^{vc}
- The number of potential maximal cliques is bounded by $\mathcal{O}^{*}\left(4^{v c}\right)$

Vertex cover and minimal separators

Vertex cover and minimal separators

For any vertex cover W

$$
S \rightarrow\left(S^{W}, D_{1}, D_{2}\right)=W
$$

$$
S=S^{W} \cup\left\{x \in V \backslash W \mid N(x) \text { intersects both } D_{1} \text { and } D_{2}\right\}
$$

Vertex cover and minimal separators

For any vertex cover W

$$
\begin{gathered}
S \rightarrow\left(S^{W}, D_{1}, D_{2}\right)=W \\
S=S^{W} \cup\left\{x \in V \backslash W \mid N(x) \text { intersects both } D_{1} \text { and } D_{2}\right\}
\end{gathered}
$$

Theorem

- Number of minimal separators is $\mathcal{O}\left(3^{\mathrm{vc}}\right)$
- They can be listed in time $\mathcal{O}^{*}\left(3^{\mathrm{vc}}\right)$

Potential maximal cliques and minimal separators

Potential maximal cliques and minimal separators

Potential maximal cliques and minimal separators

Potential maximal cliques and minimal separators

Potential maximal cliques and minimal separators

Vertex cover and pmc

Vertex cover and pmc

For any vertex cover W

$$
\Omega \rightarrow\left(\Omega^{W}, D_{R}, D_{U}, D_{L}\right)=W
$$

$\Omega=\Omega^{W}$
$\cup\left\{x \in V \backslash W \mid N(x)\right.$ intersects both D_{R} and $\left.\left(D_{U} \cup D_{L}\right)\right\}$
$\cup\left\{x \in V \backslash W \mid N(x)\right.$ intersects both D_{U} and $\left.D_{L}\right\}$

Vertex cover and pmc

For any vertex cover W

$$
\begin{gathered}
\Omega \rightarrow\left(\Omega^{W}, D_{R}, D_{U}, D_{L}\right)=W \\
\Omega=\Omega^{W} \\
\cup\left\{x \in V \backslash W \mid N(x) \text { intersects both } D_{R} \text { and }\left(D_{U} \cup D_{L}\right)\right\} \\
\cup\left\{x \in V \backslash W \mid N(x) \text { intersects both } D_{U} \text { and } D_{L}\right\}
\end{gathered}
$$

Theorem

- Number of potential maximal cliques is $\mathcal{O}^{*}\left(4^{\mathrm{vc}}\right)$
- They can be listed in time $\mathcal{O}^{*}\left(4^{\mathrm{vc}}\right)$

Modular width

Definition

The modular width $\mathrm{mw}(G)$ can be defined as the maximum degree of a prime node in the modular decomposition tree of G

- The number of minimal separators is bounded by $\mathcal{O}^{*}\left(1.6181^{\mathrm{mw}}\right)$,
- The number of potential maximal cliques is bounded by $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$.

Modular width and minimal separators

G

Modular width and minimal separators

G

Modular width and minimal separators

G

Modular width and minimal separators

Theorem (Fomin, Villanger (2010))
Every n-vertex graph has $\mathcal{O}\left(1.6181^{n}\right)$ minimal separators and $\mathcal{O}\left(1.7347^{n}\right)$ potential maximal cliques.

Conclusion

Theorem
Optimal Induced Subgraph for \mathcal{P} and t can be solved in time $\mathcal{O}^{*}\left(4^{v c}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$

Conclusion

Theorem
Optimal Induced Subgraph for \mathcal{P} and t can be solved in time $\mathcal{O}^{*}\left(4^{v c}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$

Also..

- (Weighted) Treewidth,
- (Weighted) Minimum fill in,
- Treelength.

Are solvable in time $\mathcal{O}^{*}(\# \mathrm{pmc})$ ([Gysel], [Lokshtanov],..)

Conclusion

Theorem
Optimal Induced Subgraph for \mathcal{P} and t can be solved in time $\mathcal{O}^{*}\left(4^{v c}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$

Also..

- (Weighted) Treewidth,
- (Weighted) Minimum fill in,
- Treelength.

Are solvable in time $\mathcal{O}^{*}(\# \mathrm{pmc})$ ([Gysel], [Lokshtanov],..) (then in time $\mathcal{O}^{*}\left(4^{\mathrm{vc}}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$).

Conclusion

Theorem
Optimal Induced Subgraph for \mathcal{P} and t can be solved in time $\mathcal{O}^{*}\left(4^{v c}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$

Also..

- (Weighted) Treewidth,
- (Weighted) Minimum fill in,
- Treelength.

Are solvable in time $\mathcal{O}^{*}(\# \mathrm{pmc})$ ([Gysel], [Lokshtanov],..) (then in time $\mathcal{O}^{*}\left(4^{\mathrm{vc}}\right)$ and $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$).

- Running times that are single exponential in the parameter.
- This result covers both sparse and dense families of graphs.

Second result

Definition $\left(\mathcal{G}_{\text {poly }}+k v\right)$
$G \in \mathcal{G}_{\text {poly }}+k v$ if there exists a set $M \subset V$ called modulator, $|M| \leq k$ s.t. $G-M \in \mathcal{G}_{\text {poly }}$.

Theorem (Liedloff, M. and Todinca. WG 2015)
Optimal Induced Subgraph for \mathcal{P} and t on $\mathcal{G}_{\text {poly }}+k v$ with parameter k is fixed-parameter tractable, when the modulator is also part of the input.

The tools

- Tools from [Fomin, Villanger, 2010] and [Fomin, Todinca, Villanger, 2015] for computing a Maximum induced subgraph of TREEWIDTH t :
- Decompositions with minimal separators.
- Potential maximal cliques
- Dynamic programming over all minimal tree decompositions of the input graphs, using potential maximal cliques.
- Results [Bodlaender, Kloks, 1996]
- Given a graph G and a tree decomposition of width at most $k+t$, determine if G has treewidth t in time $\mathcal{O}(f(t+k) n)$,

Decomposing with minimal separators

Decomposing with minimal separators

g
h

Decomposing with minimal separators

- $\begin{aligned} & g \\ & h\end{aligned}$

Decomposing with minimal separators

- $\begin{aligned} & g \\ & h\end{aligned}$

Decomposing with minimal separators

Theorem (Parra, Schaeffler 97)
Decomposing through minimal separators \rightarrow minimal tree decompositions.

Potential maximal cliques

Definition
A set of vertices Ω is a potential maximal clique of G if is a maximal clique in some minimal triangulation of G.

Definition

A set of vertices Ω is a potential maximal clique of G if there is a minimal tree decomposition $T G$ of G such that Ω is a bag in $T G$.

Proposition (Bouchitté, Todinca 2001)

The number of potential maximal cliques is polynomial in the number of minimal separators.

Dynamic programming over minimal separators...

MAXIMUM INDUCED SUBGRAPH OF TREEWIDTH t ON $\mathcal{G}_{\text {poly }}$
S : minimal separator of G
C : component of $G-S$
T : a subset of S of size $\leq t+1$
$O P T(S, C, T)$ the size of the largest partial solution $G[F]$ s.t.

- $F \subseteq S \cup C$
- $T=F \cap S$

C

Dynamic programming over minimal separators...

MAximum induced subgraph of Treewidth t ON $\mathcal{G}_{p o l y}$
S : minimal separator of G
C : component of $G-S$
T : a subset of S of size $\leq t+1$
OPT (S, C, T) the size of the largest partial solution $G[F]$ s.t.

- $F \subseteq S \cup C$
- $T=F \cap S$

....and potential maximal cliques

$$
O P T(S, C, T):
$$

....and potential maximal cliques

OPT(S, C, T):

- guess the potential maximal clique Ω splitting $S \cup C$

....and potential maximal cliques

$$
O P T(S, C, T):
$$

- guess the potential maximal clique Ω splitting $S \cup C$

....and potential maximal cliques

$\operatorname{OPT}(S, C, T)$:

- guess the potential maximal clique Ω splitting $S \cup C$
- and $T \subseteq T^{\prime}$ the bag of F that intersects Ω,

$$
\left|T^{\prime}\right| \leq t+1
$$

....and potential maximal cliques

$$
\text { OPT }(S, C, T):
$$

- guess the potential maximal clique Ω splitting $S \cup C$
- and $T \subseteq T^{\prime}$ the bag of F that intersects Ω,

$$
\left|T^{\prime}\right| \leq t+1
$$

$\operatorname{OPT}\left(S_{1}, C_{1}, T^{\prime} \cap S_{1}\right)+O P T\left(S_{2}, C_{2}, T^{\prime} \cap S_{2}\right)+\left|T^{\prime} \backslash\left\{S_{1} \cup S_{2}\right\}\right|$

$$
O P T(S, C, T):
$$

- guess the potential maximal clique Ω splitting $S \cup C$
- and $T \subseteq T^{\prime}$ the bag of F that intersects Ω,

$$
\left|T^{\prime}\right| \leq t+1
$$

$$
\begin{aligned}
\operatorname{OPT}(S, C, T)= & \max ^{S \subset \Omega \subset C \cup S, T \subset T^{\prime} \subset \Omega}\left(O P T\left(S_{1}, C_{1}, T^{\prime} \cap S_{1}\right)\right. \\
& \left.+O P T\left(S_{2}, C_{2}, T^{\prime} \cap S_{2}\right)+\left|T^{\prime} \backslash\left\{S_{1} \cup S_{2}\right\}\right|\right)
\end{aligned}
$$

$$
O P T(S, C, T):
$$

- guess the potential maximal clique Ω splitting $S \cup C$
- and $T \subseteq T^{\prime}$ the bag of F that intersects Ω, $\left|T^{\prime}\right| \leq t+1$.

$$
\begin{aligned}
\operatorname{OPT}(S, C, T)= & \max ^{\operatorname{S\subset \Omega \subset C\cup S,T\subset T^{\prime }\subset \Omega }\left(O P T\left(S_{1}, C_{1}, T^{\prime} \cap S_{1}\right)\right.} \\
& \left.+O P T\left(S_{2}, C_{2}, T^{\prime} \cap S_{2}\right)+\left|T^{\prime} \backslash\left\{S_{1} \cup S_{2}\right\}\right|\right)
\end{aligned}
$$

Running time: O ($n^{t+c s t .}$ \#potential maximal cliques) Key lemma [Fomin, Villanger 2010]: we don't miss solutions.

Dynamic programming over minimal separators...

Maximum induced subgraph of treewidth t on $\mathcal{G}_{\text {poly }}+k v$
F^{M} : A subset of the modulator of size k^{\prime}.

S: minimal separator of G^{\prime}
C : component of $G^{\prime}-S$
T : a subset of S of size $\leq t+1$
OPT (S, C, T) the size of the largest partial solution $G[F]$ s.t.

- $F^{M}=F \cap M$
- $F \backslash M \subseteq S \cup C$
- $T=F \cap S$

Dynamic programming over minimal separators...

Maximum induced subgraph of treewidth t on $\mathcal{G}_{\text {poly }}+k v$
F^{M} : A subset of the modulator of size k^{\prime}.

S: minimal separator of G^{\prime}
C : component of $G^{\prime}-S$
T : a subset of S of size $\leq t+1$
OPT (S, C, T) the size of the largest partial solution $G[F]$ s.t.

- $F^{M}=F \cap M$
- $F \backslash M \subseteq S \cup C$
- $T=F \cap S$

This way we build a tree decomposition of $G[F]$ of width $\leq t+k^{\prime}$
[Bodlaender, Kloks, 1996]:

- Algorithm that takes as input a graph with a tree decomposition of width at most $t+k$ and decides if this graph has treewidth t in time $\mathcal{O}(f(t+k) n)$, with $f(x)=2^{\mathcal{O}\left(x^{3} \log (x)\right)}$
[Bodlaender, Kloks, 1996]:
- Algorithm that takes as input a graph with a tree decomposition of width at most $t+k$ and decides if this graph has treewidth t in time $\mathcal{O}(f(t+k) n)$, with $f(x)=2^{\mathcal{O}\left(x^{3} \log (x)\right)}$
- Full set of characteristics: Set of constant size that encodes the decision in a partial solution
[Bodlaender, Kloks, 1996]:
- Algorithm that takes as input a graph with a tree decomposition of width at most $t+k$ and decides if this graph has treewidth t in time $\mathcal{O}(f(t+k) n)$, with $f(x)=2^{\mathcal{O}\left(x^{3} \log (x)\right)}$
- Full set of characteristics: Set of constant size that encodes the decision in a partial solution
- if two partial solutions are glued, then the characteristic of the resulting graph can be computed from the characteristics of each part.

Dynamic programming over minimal separators...

F^{M} : A subset of the modulator of size k^{\prime}.
S: minimal separator of G^{\prime}
C : component of $G^{\prime}-S$
T : a subset of S of size $\leq t+1$
c: a characteristic of $(\operatorname{tw}(G) \leq t)$
OPT (S, C, T, c) the size of the largest partial solution $G[F]$ s.t.

- $F^{M}=F \cap M$
- $F \backslash M \subseteq S \cup C$
- $T=F \cap S,|T| \leq t$

- $G[F]$ has characteristic c

Dynamic programming over minimal separators...

F^{M} : A subset of the modulator of size k^{\prime}.
S : minimal separator of G^{\prime}
C : component of $G^{\prime}-S$
T : a subset of S of size $\leq t+1$
c: a characteristic of $(\operatorname{tw}(G) \leq t)$
OPT (S, C, T, c) the size of the largest partial solution $G[F]$ s.t.

- $F^{M}=F \cap M$
- $F \backslash M \subseteq S \cup C$
- $T=F \cap S,|T| \leq t$

- $G[F]$ has characteristic c

Running time: $O\left(n^{t+c s t} \cdot f(t+k)\right.$. \#potential maximal cliques)

Dynamic programming over minimal separators...

F^{M} : A subset of the modulator of size k^{\prime}.
S: minimal separator of G^{\prime}
C : component of $G^{\prime}-S$
T : a subset of S of size $\leq t+1$
c : a characteristic of $(\operatorname{tw}(G) \leq t) \wedge \mathcal{P}$
OPT (S, C, T, c) the size of the largest partial solution $G[F]$ s.t.

- $F^{M}=F \cap M$
- $F \backslash M \subseteq S \cup C$
- $T=F \cap S,|T| \leq t$

- $G[F]$ has characteristic c

Running time: $O\left(n^{t+c s t} \cdot f(t+k, \mathcal{P}) \cdot\right.$ \#potential maximal cliques)

To sum up

Theorem

Optimal Induced Subgraph for \mathcal{P} and t on $\mathcal{G}_{\text {poly }}+k v$ is solvable in time $\mathcal{O}\left(n^{t} \cdot p o l y^{\prime}(n) \cdot f(t+k, \mathcal{P})\right)$ when the modulator is also part of the input.

t	\mathcal{P}	f
any	any	tower of exponentials
any	none	$2^{\mathcal{O}\left((t+k)^{3} \log (t+k)\right)}$
0	none	$2^{\mathcal{O}(k)}$
1	none	$2^{\mathcal{O}(k \log (k))}$

To sum up

Theorem

Optimal Induced Subgraph for \mathcal{P} and t on $\mathcal{G}_{\text {poly }}+k v$ is solvable in time $\mathcal{O}\left(n^{t} \cdot\right.$ poly $\left.^{\prime}(n) \cdot f(t+k, \mathcal{P})\right)$ when the modulator is also part of the input.

t	\mathcal{P}	f
any	any	tower of exponentials
any	be connected	$2^{\mathcal{O}\left((t+k)^{3} \log (t+k)\right)}$
0	none	$2^{\mathcal{O}(k)}$
1	be connected	$2^{\mathcal{O}(k \log (k))}$

Discussion

What if the modulator is not a part of the input?

Discussion

What if the modulator is not a part of the input?
Deletion to $\mathcal{G}_{\text {poly }}$
Input: A graph $G=(V, E)$ and a constant k
Parameter: k
Output: A set $M \subseteq V$ of size at most k s.t. $G-M$ belongs to $\mathcal{G}_{\text {poly }}$.

Discussion

What if the modulator is not a part of the input?
Deletion to $\mathcal{G}_{\text {poly }}$
Input: A graph $G=(V, E)$ and a constant k
Parameter: k
Output: A set $M \subseteq V$ of size at most k s.t. $G-M$ belongs to $\mathcal{G}_{\text {poly }}$.
[Heggernes, van't Hof, Jansen, Kratsch, Villanger, 2013]

- Weakly chordal $+k v$ is $W[2]$-Hard
[Cao, Marx, 2014]
- Chordal $+k v$ is FPT

Discussion

What if the modulator is not a part of the input?
Deletion to $\mathcal{G}_{\text {poly }}$
Input: A graph $G=(V, E)$ and a constant k
Parameter: k
Output: A set $M \subseteq V$ of size at most k s.t. $G-M$ belongs to $\mathcal{G}_{\text {poly }}$.
[Heggernes, van't Hof, Jansen, Kratsch, Villanger, 2013]

- Weakly chordal $+k v$ is $W[2]$-Hard
[Cao, Marx, 2014]
- Chordal $+k v$ is FPT

