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Definition

(Boolean) Constraint Satisfaction Problem (CSP):

A set of variables X over {0, 1}.
A set of constraints φ involving positive and negative
appearances of the variables (literals).

Decide whether there exists an assignment on X that satisfies:

(AllCSP) all the constraints in φ;

(MaxCSP) at least k constraints in φ (given some value k).

Example: CNFSat is a CSP.
φ = (¬x ∨ z) ∧ (x ∨ y ∨ ¬w) ∧ (¬z ∨ w)
X = {x , y , z ,w}.
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CSP is hard!

Almost all interesting (Max)CSP are NP-hard [Schaefer 1978]
and APX-hard [Creignou 1995],[Khanna et al. 2001].

Study special cases (parameterized complexity!)

[Samer, Szeider 2010]: Classification of an extensive list of
parameters including # vars, # cons, max constraint size
(arity), max # of var occurence . . .

. . . Structural parameterizations
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Structural CSP

Define some graph structure of φ.

Study CSPs for special graph classes.

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).

Acyclicity: Start from the leaves and work your way up
(poly-time).
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Structural CSP

Define some graph structure of φ.
Study CSPs for special graph classes.

Incidence graph representation of a CSP

(Unsigned) variables and constraints are represented by
vertices;

a constraint vertex is connected to a variable vertex iff the
corresponding constraint involves the corresponding variable.

Figure: The incidence graph representation of the previous formula
(¬x ∨ z) ∧ (x ∨ y ∨ ¬w) ∧ (¬z ∨ w).

Low degree: Bounding degree of incidence graph doesn’t help
(3CNFSAT where every variable appears at most 3 times is
NP-complete).
Acyclicity: Start from the leaves and work your way up
(poly-time).
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Structural Parameterizations

Parameter map: q ← p (which reads ‘q dominates p’) between
two parameters means that q is bounded when p is bounded.
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Structural Parameterizations

Goal: design algorithms for most dominant parameter (hold
downward) and hardness for least dominant (hold upward).
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Structural Parameterizations

New approach: study FPT approximations to evade hardness. In
this talk we examine the existence of FPT Approximation Schemes.
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Structural Parameterizations

Definition

FPT Approximation Scheme (FPT-AS): ∀ε > 0 there is an (1− ε)-
approximation algorithm running in time O(f (ε, k) · poly(n)).
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Constraints Studied

We explore four natural, well-studied boolean functions which
exhibit wildly different behaviors:

1 or constraints;

2 and constraints;

3 parity constraints;

4 majority constraints.

An assignment satisfies such a constraint if at least one literal is
made true.
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Constraints Studied

We explore four natural, well-studied boolean functions which
exhibit wildly different behaviors:
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2 and constraints;

3 parity constraints;

4 majority constraints.

An assignment satisfies such a constraint if all literals are made
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Constraints Studied

We explore four natural, well-studied boolean functions which
exhibit wildly different behaviors:

1 or constraints;

2 and constraints;

3 parity constraints;

4 majority constraints.

An assignment satisfies such a constraint if the sum of the literals
is odd - or even.
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Constraints Studied

We explore four natural, well-studied boolean functions which
exhibit wildly different behaviors:

1 or constraints;

2 and constraints;

3 parity constraints;

4 majority constraints.

An assignment satisfies such a constraint if at least half of the
literals are made true.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 6 / 1



Overview of Results

Figure: Diagram for CNFSat and
MaxCNFSat.

Figure: Diagram for
MaxDNFSat.

Figure: Diagram for MaxParity. Figure: Diagram for Majority
and MaxMajority.
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CNFSat and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSat parameterized by incidence
treewidth (tw∗) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

CNFSat parameterized by cw∗ is W[1]-hard.

Hardness even holds for a more restricted
parameter modular treewidth [Paulusma,
Slivovsky, Szeider 2013].
→ We extend W[1]-hardness to incidence
neighborhood diversity (nd∗).
→ We also present an FPT-AS for cw∗.
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Neighborhood diversity

Definition [Lampis 2010]

A graph has neighborhood
diversity k if its vertices can be
separated into k independent sets
or cliques where any two vertices
in a set have common
neighborhood.
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Neighborhood diversity

Formula φ has nd∗(Gφ) ≤ k

There are at most k blocks of
variables and clauses, where:

variables in the same block
belong in the same clauses;

clauses in the same block
involve the same variables.
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Neighborhood diversity

Formula φ has nd∗(Gφ) ≤ k

Positive and negative
appearances of variables can:

produce exponentially many
clauses;

encode exponentially many
items in binary.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 9 / 1



Neighborhood diversity

Theorem

CNFSat parameterized by the
incidence neighborhood diversity
nd∗(Gφ) is W[1]-hard.
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On the positive side. . .

Theorem

MaxCNFSat parameterized by cw∗ admits an FPT-AS.

Reminder

FPT-AS (FPT Approximation Scheme) for a maximization problem
parameterized by k : ∀ε > 0 there exists an (1− ε)-approximation
algorithm running in O(f (ε, k) · poly(n)).
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An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

Arrange the clauses in increasing order of arity (0 to a).

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 11 / 1



An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

Arrange the clauses in increasing order of arity (0 to a).
Split them into big (arity at least g(ε)), small (arity at most g ′(ε),
and medium.
Consider the following cases:
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An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

(Almost) all clauses are big:

ignore small clauses;

a random assignment satisfies ≥ (1− ε)(1− 2−g(ε)) ·m
clauses (with high probability).

Since m ≥ OPT , SOL ≥ (1− ε′)OPT , for some ε′

depending on ε.
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An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

(Almost) all clauses are small:

ignore large clauses;

degree on one side of the incidence graph is bounded
→ no large biclique subgraphs;

By [Gurski, Wanke 2000], the incidence graph has bounded
treewidth → solve optimally the remaining small clauses;
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An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

(Almost) no medium-size clauses and B,S are balanced:

Y hits few clauses of S (call this set S ′);

at most ε2 clauses of B have ≤ 1/ε
neighbors in Y (call this set B ′).
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(Almost) no medium-size clauses and B,S are balanced:

variable occurences(B) ≥ |B| · D = m·d
ε2

;

variable occurences(S) ≤ |S | · d ≤ m · d .

→ ∃y ∈ V that appears 1/ε2 more times in B than in S .

Y hits few clauses of S (call this set S ′);

at most ε2 clauses of B have ≤ 1/ε
neighbors in Y (call this set B ′).
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An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

(Almost) no medium-size clauses and B,S are balanced:
From the previous observation, we iteratively create
a set of variables Y with the following properties:

Y hits few clauses of S (call this set S ′);

at most ε2 clauses of B have ≤ 1/ε
neighbors in Y (call this set B ′).
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An FPT-AS for MaxCNFSat parameterized by cw∗

B: Clauses of arity ≥ D = g(ε).

S: Clauses of arity ≤ d = g′(ε).

D = d · ε4

(Almost) no medium-size clauses and B,S are balanced:
From the previous observation, we iteratively create
a set of variables Y with the following properties:

Y hits few clauses of S (call this set S ′);

at most ε2 clauses of B have ≤ 1/ε
neighbors in Y (call this set B ′).

Randomly assigning Y should satisfy whp ≥
(1 − ε2) · (1 − 2−1/ε) of B \ B ′, while S \ S ′

can be solved optimally.
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An FPT-AS for MaxCNFSat parameterized by cw∗

Lemma

We can always find a small set M (|M| ≤ ε ·m) of medium-size
clauses (arities d ∼ D).
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An FPT-AS for MaxCNFSat parameterized by cw∗

Lemma

We can always find a small set M (|M| ≤ ε ·m) of medium-size
clauses (arities d ∼ D).

Define 1/ε + 1 independent intervals of medium-arity clauses
(right-left bounds are an L(= ε−4)-factor apart).
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An FPT-AS for MaxCNFSat parameterized by cw∗

Lemma

We can always find a small set M (|M| ≤ ε ·m) of medium-size
clauses (arities d ∼ D).

There should be at least one interval [d ,D] (D = L ·d) containing
≤ ε ·m clauses.
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An FPT-AS for MaxCNFSat parameterized by cw∗

Lemma

We can always find a small set M (|M| ≤ ε ·m) of medium-size
clauses (arities d ∼ D).

Removing them divides the clauses into small (S) and big (B).
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The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m

Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m

Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m

Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m

Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;

Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m

Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m

Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m

Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m
Ignore B;

GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m
Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m
Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m
Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.

Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



The algorithm

Find interval [d,D] of at most ε ·m clauses of medium arities
as in the previous Lemma and ignore them.

Split remaining clauses into S (arity < d) and B (arity > D).

If |S | ≤ ε2 ·m
Ignore S ;
Randomly assign variables to satisfy most of B.

If at most |B| ≤ ε2 ·m
Ignore B;
GS has bounded treewidth → solve optimally.

Otherwise

Find set of variables Y as in the last case and set it randomly
to satisfy most of B.
Ignore part of S that contains variables from Y and solve the
rest optimally.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 13 / 1



And and Parity Constraints

Similarities

DNFSat and Parity are both in P.

MaxDNFSat and MaxParity are
both APX-hard.

MaxDNFSat and MaxParity are
both FPT parameterized by tw∗.

Different behavior for dense structural
parameters

MaxDNFSat parameterized by nd∗

does not admit FPT-AS (unless
FPT=W[1]);

MaxParity parameterized by cw∗

is FPT.
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A more difficult constraint - Majority

Corollary (tweak of W-hardness for CNFSat)

Majority parameterized by nd∗ is W[1]-hard.

→Majority parameterized by tw∗ is W[1]-hard.
In fact,

Theorem

Majority parameterized by fvs∗ is W[1]-hard.

Theorem

MaxMajority parameterized by vc∗ is FPT.

Theorem

MaxMajority parameterized by fvs∗ admits an
FPT-AS.
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MaxMajority parameterized by vc∗ is FPT

Remark 1

vc∗ dominates both n = #vars and m = #cons.

Remark 2

We can reduce MaxMajority parameterized by vc∗ to
MaxMajority parameterized by m.

Remark 3

We can reduce MaxMajority to Majority.

Remark 4

We can reduce Majority to an ILP with 3m variables → FPT
[Lenstra 1983].
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MaxMajority parameterized by fvs∗ admits an FPT-AS

(Again, we can assume that fvs∗ contains only constraint vertices.)
We consider two cases:

If m < 2 · fvs∗/ε, the graph reduces to the bounded m case.

If m ≥ 2 · fvs∗/ε, then fvs∗ ≤ m · ε/2:

ignore fvs∗;
solve optimally the acyclic graph.

In order to obtain the desired outcome in the second case, we need
linear dependence of OPT and m:

OPT ≥ m
2 (if an assignment doesn’t satisfy at least m

2
constraints, it’s negation does).
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Conclusions

We studied four natural boolean CSPs (or, and, parity,
majority constraints).

Structural parameterizations (incidence graph).

Provided some of the first parameterized approximation
results for CSP.

Complexity-wise, studied CSPs exhibit wildly different
behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS
unless FPT=W[1]).

Complete classification?
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Summary of Results

Figure: Diagram for CNFSat and
MaxCNFSat.

Figure: Diagram for
MaxDNFSat.

Figure: Diagram for MaxParity. Figure: Diagram for Majority
and MaxMajority.
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Thank you!
Questions?
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