Complexity and Approximability for Parameterized Constraint Satisfaction Problems

Holger Dell, Eunjung Kim, Michael Lampis, Valia Mitsou, Tobias Mömke

Institute for Computer Science and Control, Hungarian Academy of Sciences

GROW 2015, Aussois (France)
(Boolean) Constraint Satisfaction Problem (CSP):

- A set of variables X over $\{0,1\}$.
- A set of constraints ϕ involving positive and negative appearances of the variables (literals).

Definition

(Boolean) Constraint Satisfaction Problem (CSP):

- A set of variables X over $\{0,1\}$.
- A set of constraints ϕ involving positive and negative appearances of the variables (literals).
Decide whether there exists an assignment on X that satisfies:
- (AllCSP) all the constraints in ϕ;
- (MaxCSP) at least k constraints in ϕ (given some value k).

Definition

(Boolean) Constraint Satisfaction Problem (CSP):

- A set of variables X over $\{0,1\}$.
- A set of constraints ϕ involving positive and negative appearances of the variables (literals).
Decide whether there exists an assignment on X that satisfies:
- (AllCSP) all the constraints in ϕ;
- (MAxCSP) at least k constraints in ϕ (given some value k).

Example: CNFSAT is a CSP.
$\phi=(\neg x \vee z) \wedge(x \vee y \vee \neg w) \wedge(\neg z \vee w)$
$X=\{x, y, z, w\}$.

CSP is hard!

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995],[Khanna et al. 2001].

CSP is hard!

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995],[Khanna et al. 2001].
- Study special cases (parameterized complexity!)

CSP is hard!

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995],[Khanna et al. 2001].
- Study special cases (parameterized complexity!)
- [Samer, Szeider 2010]: Classification of an extensive list of parameters including \# vars, \# cons, max constraint size (arity), max \# of var occurence ...

CSP is hard!

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995],[Khanna et al. 2001].
- Study special cases (parameterized complexity!)
- [Samer, Szeider 2010]: Classification of an extensive list of parameters including \# vars, \# cons, max constraint size (arity), max \# of var occurence ...
- ...Structural parameterizations

Structural CSP

- Define some graph structure of ϕ.
- Study CSPs for special graph classes.

Structural CSP

- Define some graph structure of ϕ.

Structural CSP

Incidence graph representation of a CSP

- (Unsigned) variables and constraints are represented by vertices;
- a constraint vertex is connected to a variable vertex iff the corresponding constraint involves the corresponding variable.

Figure: The incidence graph representation of the previous formula $(\neg x \vee z) \wedge(x \vee y \vee \neg w) \wedge(\neg z \vee w)$.

Structural CSP

- Study CSPs for special graph classes.

Structural CSP

Example classes (CNFSAT)

- Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).

Structural CSP

Example classes (CNFSAT)

- Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).
- Acyclicity: Start from the leaves and work your way up (poly-time).

Structural Parameterizations

Parameter map: $q \leftarrow p$ (which reads ' q dominates p ') between two parameters means that q is bounded when p is bounded.

Structural Parameterizations

Goal: design algorithms for most dominant parameter (hold downward) and hardness for least dominant (hold upward).

Structural Parameterizations

New approach: study FPT approximations to evade hardness. In this talk we examine the existence of FPT Approximation Schemes.

Structural Parameterizations

Definition

FPT Approximation Scheme (FPT-AS): $\forall \epsilon>0$ there is an $(1-\epsilon)-$ approximation algorithm running in time $O(f(\epsilon, k) \cdot \operatorname{poly}(n))$.

Constraints Studied

We explore four natural, well-studied boolean functions which exhibit wildly different behaviors:
(1) or constraints;

An assignment satisfies such a constraint if at least one literal is made true.

Constraints Studied

We explore four natural, well-studied boolean functions which exhibit wildly different behaviors:
(1) or constraints;
(2) and constraints;

An assignment satisfies such a constraint if all literals are made true.

Constraints Studied

We explore four natural, well-studied boolean functions which exhibit wildly different behaviors:
(1) or constraints;
(2) and constraints;
(3) parity constraints;

An assignment satisfies such a constraint if the sum of the literals is odd - or even.

Constraints Studied

We explore four natural, well-studied boolean functions which exhibit wildly different behaviors:
(1) or constraints;
(2) and constraints;
(3) parity constraints;
(9) majority constraints.

An assignment satisfies such a constraint if at least half of the literals are made true.

Overview of Results

Figure: Diagram for CNFSAT and MaxCNFSAt.

Figure: Diagram for MaxParity.

Figure: Diagram for MaxDNFSAT.

Figure: Diagram for Majority and MaxMajority.

CNFSAt and MaxCNFSAT

CNFSAt and MaxCNFSat

Theorem [Szeider 2004]
MaxCNFSAT parameterized by incidence treewidth (tw^{*}) is FPT.

CNFSAt and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSAT parameterized by incidence treewidth (tw^{*}) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]
CNFSAT parameterized by cw^{*} is $\mathrm{W}[1]$-hard.

CNFSAt and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSAT parameterized by incidence treewidth (tw^{*}) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]
CNFSAT parameterized by cw^{*} is $\mathrm{W}[1]$-hard.
Hardness even holds for a more restricted parameter modular treewidth [Paulusma, Slivovsky, Szeider 2013].

CNFSAt and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSAT parameterized by incidence treewidth (tw^{*}) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]
CNFSAT parameterized by cw^{*} is $\mathrm{W}[1]$-hard.
Hardness even holds for a more restricted parameter modular treewidth [Paulusma, Slivovsky, Szeider 2013].
\rightarrow We extend W[1]-hardness to incidence
 neighborhood diversity ($n d^{*}$).

CNFSAt and MaxCNFSat

Theorem [Szeider 2004]

MaxCNFSAT parameterized by incidence treewidth (tw^{*}) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]
CNFSAT parameterized by cw^{*} is $\mathrm{W}[1]$-hard.
Hardness even holds for a more restricted parameter modular treewidth [Paulusma, Slivovsky, Szeider 2013].
\rightarrow We extend W[1]-hardness to incidence
 neighborhood diversity ($n d^{*}$).
\rightarrow We also present an FPT-AS for $c w^{*}$.

Neighborhood diversity

Definition [Lampis 2010]

A graph has neighborhood diversity k if its vertices can be separated into k independent sets or cliques where any two vertices in a set have common neighborhood.

Variables Clauses

Neighborhood diversity

Neighborhood diversity

Neighborhood diversity

Theorem
CNFSAT parameterized by the incidence neighborhood diversity $n d^{*}\left(G_{\phi}\right)$ is W[1]-hard.

Variables Clauses

On the positive side. . .

Theorem
 MaxCNFSAT parameterized by $c w^{*}$ admits an FPT-AS.

On the positive side. . .

Theorem

MaxCNFSAT parameterized by $c w^{*}$ admits an FPT-AS.

Reminder

FPT-AS (FPT Approximation Scheme) for a maximization problem parameterized by k : $\forall \epsilon>0$ there exists an $(1-\epsilon)$-approximation algorithm running in $O(f(\epsilon, k) \cdot \operatorname{poly}(n))$.

An FPT-AS for MaxCNFSAT parameterized by cw*

Arrange the clauses in increasing order of arity (0 to a).

An FPT-AS for MaxCNFSAT parameterized by cw*

B: Clauses of arity $\geq D=g(\epsilon)$.
S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
$D=d \cdot \epsilon^{4}$

clause sizes .
Arrange the clauses in increasing order of arity (0 to a). Split them into big (arity at least $g(\epsilon)$), small (arity at most $g^{\prime}(\epsilon)$, and medium.
Consider the following cases:

An FPT-AS for MaxCNFSAT parameterized by cw*

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

clause sizes
(Almost) all clauses are big:

An FPT-AS for MaxCNFSAT parameterized by cw^{*}

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

clause sizes .
(Almost) all clauses are big:

- ignore small clauses;

An FPT-AS for MaxCNFSAT parameterized by cw*

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

(Almost) all clauses are big:

- ignore small clauses;
- a random assignment satisfies $\geq(1-\epsilon)\left(1-2^{-g(\epsilon)}\right) \cdot m$ clauses (with high probability).

An FPT-AS for MaxCNFSAT parameterized by cw*

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

(Almost) all clauses are big:

- ignore small clauses;
- a random assignment satisfies $\geq(1-\epsilon)\left(1-2^{-g(\epsilon)}\right) \cdot m$ clauses (with high probability).
- Since $m \geq O P T, S O L \geq\left(1-\epsilon^{\prime}\right) O P T$, for some ϵ^{\prime} depending on ϵ.

An FPT-AS for MaxCNFSAT parameterized by cw*

(Almost) all clauses are small:

An FPT-AS for MaxCNFSAT parameterized by cw*

(Almost) all clauses are small:

- ignore large clauses;

An FPT-AS for MaxCNFSAT parameterized by cw^{*}

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

(Almost) all clauses are small:

- ignore large clauses;
- degree on one side of the incidence graph is bounded \rightarrow no large biclique subgraphs;

An FPT-AS for MaxCNFSAT parameterized by cw*

```
    B: Clauses of arity \(\geq D=g(\epsilon)\).
    S: Clauses of arity \(\leq d=g^{\prime}(\epsilon)\).
\(D=d \cdot \epsilon^{4}\)
```


(Almost) all clauses are small:

- ignore large clauses;
- degree on one side of the incidence graph is bounded \rightarrow no large biclique subgraphs;
- By [Gurski, Wanke 2000], the incidence graph has bounded treewidth \rightarrow solve optimally the remaining small clauses;

An FPT-AS for MaxCNFSAT parameterized by cw*

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

clause sizes.
(Almost) no medium-size clauses and B, S are balanced:

An FPT-AS for MaxCNFSAT parameterized by cw*

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

clause sizes.
(Almost) no medium-size clauses and B, S are balanced:

- variable occurences $(B) \geq|B| \cdot D=\frac{m \cdot d}{\epsilon^{2}}$;
- variable occurences $(S) \leq|S| \cdot d \leq m \cdot d$.

An FPT-AS for MaxCNFSAT parameterized by cw*

> B: Clauses of arity $\geq D=g(\epsilon)$.
> S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
> $D=d \cdot \epsilon^{4}$

(Almost) no medium-size clauses and B, S are balanced:

- variable occurences $(B) \geq|B| \cdot D=\frac{m \cdot d}{\epsilon^{2}}$;
- variable occurences $(S) \leq|S| \cdot d \leq m \cdot d$.
$\rightarrow \exists y \in V$ that appears $1 / \epsilon^{2}$ more times in B than in S.

An FPT-AS for MaxCNFSAT parameterized by cw*

B: Clauses of arity $\geq D=g(\epsilon)$.
S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
$D=d \cdot \epsilon^{4}$

(Almost) no medium-size clauses and B, S are balanced:
From the previous observation, we iteratively create a set of variables Y with the following properties:

An FPT-AS for MaxCNFSAT parameterized by cw*

B: Clauses of arity $\geq D=g(\epsilon)$.
S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
$D=d \cdot \epsilon^{4}$

(Almost) no medium-size clauses and B, S are balanced:
From the previous observation, we iteratively create a set of variables Y with the following properties:

- Y hits few clauses of S (call this set S^{\prime});

An FPT-AS for MaxCNFSAT parameterized by cw*

B: Clauses of arity $\geq D=g(\epsilon)$.
S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
$D=d \cdot \epsilon^{4}$

clause sizes
(Almost) no medium-size clauses and B, S are balanced:
From the previous observation, we iteratively create a set of variables Y with the following properties:

- Y hits few clauses of S (call this set S^{\prime});
- at most ϵ^{2} clauses of B have $\leq 1 / \epsilon$ neighbors in Y (call this set B^{\prime}).

An FPT-AS for MaxCNFSAT parameterized by cw^{*}

B: Clauses of arity $\geq D=g(\epsilon)$.
S: Clauses of arity $\leq d=g^{\prime}(\epsilon)$.
$D=d \cdot \epsilon^{4}$

clause sizes
(Almost) no medium-size clauses and B, S are balanced:
From the previous observation, we iteratively create a set of variables Y with the following properties:

- Y hits few clauses of S (call this set S^{\prime});
- at most ϵ^{2} clauses of B have $\leq 1 / \epsilon$ neighbors in Y (call this set B^{\prime}).

Randomly assigning Y should satisfy whp \geq $\left(1-\epsilon^{2}\right) \cdot\left(1-2^{-1 / \epsilon}\right)$ of $B \backslash B^{\prime}$, while $S \backslash S^{\prime}$
 can be solved optimally.

An FPT-AS for MaxCNFSAT parameterized by cw*

Lemma
We can always find a small set $M(|M| \leq \epsilon \cdot m)$ of medium-size clauses (arities $d \sim D$).

An FPT-AS for MaxCNFSAT parameterized by cw^{*}

Lemma

We can always find a small set $M(|M| \leq \epsilon \cdot m)$ of medium-size clauses (arities $d \sim D$).

Define $1 / \epsilon+1$ independent intervals of medium-arity clauses (right-left bounds are an $L\left(=\epsilon^{-4}\right)$-factor apart).

An FPT-AS for MaxCNFSAT parameterized by cw*

Lemma

We can always find a small set $M(|M| \leq \epsilon \cdot m)$ of medium-size clauses (arities $d \sim D$).

There should be at least one interval $[d, D](D=L \cdot d)$ containing $\leq \epsilon \cdot m$ clauses.

An FPT-AS for MaxCNFSAT parameterized by cw*

Lemma

We can always find a small set $M(|M| \leq \epsilon \cdot m)$ of medium-size clauses (arities $d \sim D$).

Removing them divides the clauses into small (S) and big (B).

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into $S($ arity $<d)$ and $B($ arity $>D)$.
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into $S($ arity $<d)$ and B (arity $>D$).
- If $|S| \leq \epsilon^{2} \cdot m$
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into $S($ arity $<d)$ and $B($ arity $>D)$.
- If $|S| \leq \epsilon^{2} \cdot m$
- Ignore S;
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into $S($ arity $<d)$ and B (arity $>D$).
- If $|S| \leq \epsilon^{2}$. m
- Ignore S;
- Randomly assign variables to satisfy most of B.
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into $S($ arity $<d)$ and B (arity $>D$).
- If $|S| \leq \epsilon^{2} \cdot m$
- Ignore S;
- Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^{2} \cdot m$
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into $S($ arity $<d)$ and B (arity $>D$).
- If $|S| \leq \epsilon^{2}$. m
- Ignore S;
- Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^{2}$. m
- Ignore B;
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity $<d$) and B (arity $>D$).
- If $|S| \leq \epsilon^{2}$. m
- Ignore S;
- Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^{2} \cdot m$
- Ignore B;
- G_{S} has bounded treewidth \rightarrow solve optimally.
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity $<d$) and B (arity $>D$).
- If $|S| \leq \epsilon^{2}$. m
- Ignore S;
- Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^{2} \cdot m$
- Ignore B;
- G_{S} has bounded treewidth \rightarrow solve optimally.
- Otherwise
- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity $<d$) and B (arity $>D$).
- If $|S| \leq \epsilon^{2}$. m
- Ignore S;
- Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^{2} \cdot m$
- Ignore B;
- G_{S} has bounded treewidth \rightarrow solve optimally.
- Otherwise
- Find set of variables Y as in the last case and set it randomly to satisfy most of B.

The algorithm

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity $<d$) and B (arity $>D$).
- If $|S| \leq \epsilon^{2} \cdot m$
- Ignore S;
- Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^{2} \cdot m$
- Ignore B;
- G_{S} has bounded treewidth \rightarrow solve optimally.
- Otherwise
- Find set of variables Y as in the last case and set it randomly to satisfy most of B.
- Ignore part of S that contains variables from Y and solve the rest optimally.

And and Parity Constraints

Similarities
 - DNFSat and Parity are both in P.

And and Parity Constraints

Similarities

- DNFSat and Parity are both in P.
- MaxDNFSat and MaxParity are both APX-hard.

And and Parity Constraints

Similarities

- DNFSat and Parity are both in P.
- MaxDNFSat and MaxParity are both APX-hard.
- MaxDNFSat and MaxParity are both FPT parameterized by tw*.

And and Parity Constraints

Similarities

- DNFSat and Parity are both in P.
- MaxDNFSat and MaxParity are both APX-hard.
- MaxDNFSat and MaxParity are both FPT parameterized by tw*.

Different behavior for dense structural

parameters

- MaxDNFSat parameterized by nd* does not admit FPT-AS (unless $\mathrm{FPT}=\mathrm{W}[1])$;

And and Parity Constraints

Similarities

- DNFSat and Parity are both in P.
- MaxDNFSat and MaxParity are both APX-hard.
- MaxDNFSat and MaxParity are both FPT parameterized by tw*.

Different behavior for dense structural

parameters

- MaxDNFSat parameterized by nd* does not admit FPT-AS (unless $\mathrm{FPT}=\mathrm{W}[1]$);
- MaxParity parameterized by cw^{*} is FPT.

A more difficult constraint - Majority

A more difficult constraint - Majority

Corollary (tweak of W-hardness for CNFSAT)
Majority parameterized by $n d^{*}$ is W[1]-hard.

A more difficult constraint - Majority

Corollary (tweak of W-hardness for CNFSAT)
 Majority parameterized by $n d^{*}$ is W[1]-hard.

\rightarrow MAJORITY parameterized by tw^{*} is W[1]-hard.

A more difficult constraint - Majority

Corollary (tweak of W-hardness for CNFSAT)

Majority parameterized by $n d^{*}$ is W[1]-hard.
\rightarrow MAJORITY parameterized by tw* is W[1]-hard.
In fact,

Theorem

Majority parameterized by fvs* is W[1]-hard.

A more difficult constraint - Majority

Corollary (tweak of W-hardness for CNFSAT)

Majority parameterized by $n d^{*}$ is W[1]-hard.
\rightarrow MAJORITY parameterized by tw* is W[1]-hard.
In fact,

Theorem

Majority parameterized by fvs* is W[1]-hard.

Theorem

MaxMajority parameterized by $v c^{*}$ is FPT.

A more difficult constraint - Majority

Corollary (tweak of W-hardness for CNFSAT)

Majority parameterized by $n d^{*}$ is W[1]-hard.
\rightarrow MAJORITY parameterized by tw* is W[1]-hard.
In fact,

Theorem

Majority parameterized by fus* is W[1]-hard.

Theorem

MaxMajority parameterized by $v c^{*}$ is FPT.

Theorem

MaxMajority parameterized by fus* admits an FPT-AS.

MaxMajority parameterized by vc* is FPT

Remark 1

vc^{*} dominates both $n=$ \#vars and $m=$ \#cons.

MaxMajority parameterized by vc* is FPT

Remark 1

vc^{*} dominates both $n=\#$ vars and $m=\#$ cons.

Remark 2

We can reduce MaxMajority parameterized by vc* to MaxMajority parameterized by m.

MaxMajority parameterized by vc* is FPT

Remark 1

vc^{*} dominates both $n=$ \#vars and $m=$ \#cons.

Remark 2

We can reduce MaxMajority parameterized by vc* to MaxMajority parameterized by m.

Remark 3

We can reduce MaxMajority to Majority.

MaxMajority parameterized by vc* is FPT

Remark 1

vc^{*} dominates both $n=$ \#vars and $m=$ \#cons.

Remark 2

We can reduce MaxMajority parameterized by vc* to MAXMAJORITY parameterized by m.

Remark 3

We can reduce MaxMajority to Majority.

Remark 4

We can reduce Majority to an ILP with 3^{m} variables \rightarrow FPT [Lenstra 1983].

MaxMajority parameterized by fvs* admits an FPT-AS

(Again, we can assume that fvs* contains only constraint vertices.) We consider two cases:

MaxMAjority parameterized by fvs* admits an FPT-AS

(Again, we can assume that fvs* contains only constraint vertices.) We consider two cases:

- If $m<2 \cdot \mathrm{fvs}^{*} / \epsilon$, the graph reduces to the bounded m case.

MaxMAjority parameterized by fvs* admits an FPT-AS

(Again, we can assume that fvs* contains only constraint vertices.) We consider two cases:

- If $m<2 \cdot \mathrm{fvs}^{*} / \epsilon$, the graph reduces to the bounded m case.
- If $m \geq 2 \cdot \mathrm{fvs}^{*} / \epsilon$, then $\mathrm{fvs}^{*} \leq m \cdot \epsilon / 2$:

MaxMAjority parameterized by fvs* admits an FPT-AS

(Again, we can assume that fvs* contains only constraint vertices.) We consider two cases:

- If $m<2 \cdot \mathrm{fvs}^{*} / \epsilon$, the graph reduces to the bounded m case.
- If $m \geq 2 \cdot \mathrm{fvs}^{*} / \epsilon$, then $\mathrm{fvs}^{*} \leq m \cdot \epsilon / 2$:
- ignore fvs*;
- solve optimally the acyclic graph.

MaxMAjority parameterized by fvs* admits an FPT-AS

(Again, we can assume that fvs* contains only constraint vertices.) We consider two cases:

- If $m<2 \cdot$ fvs* $/ \epsilon$, the graph reduces to the bounded m case.
- If $m \geq 2 \cdot \mathrm{fvs}^{*} / \epsilon$, then $\mathrm{fvs}^{*} \leq m \cdot \epsilon / 2$:
- ignore fvs*;
- solve optimally the acyclic graph.

In order to obtain the desired outcome in the second case, we need linear dependence of OPT and m :

MaxMAjority parameterized by fvs* admits an FPT-AS

(Again, we can assume that fvs* contains only constraint vertices.) We consider two cases:

- If $m<2 \cdot$ fvs* $/ \epsilon$, the graph reduces to the bounded m case.
- If $m \geq 2 \cdot \mathrm{fvs}^{*} / \epsilon$, then $\mathrm{fvs}^{*} \leq m \cdot \epsilon / 2$:
- ignore fvs*;
- solve optimally the acyclic graph.

In order to obtain the desired outcome in the second case, we need linear dependence of OPT and m :

- $O P T \geq \frac{m}{2}$ (if an assignment doesn't satisfy at least $\frac{m}{2}$ constraints, it's negation does).

Conclusions

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first parameterized approximation results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless $\mathrm{FPT}=\mathrm{W}[1]$).
- Complete classification?

Conclusions

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first parameterized approximation results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless $\mathrm{FPT}=\mathrm{W}[1]$).
- Complete classification?

Conclusions

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first parameterized approximation results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless $\mathrm{FPT}=\mathrm{W}[1]$).
- Complete classification?

Conclusions

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first parameterized approximation results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

Summary of Results

Figure: Diagram for CNFSAT and MaxCNFSAt.

Figure: Diagram for MaxParity.

Figure: Diagram for MaxDNFSAT.

Figure: Diagram for Majority and MaxMajority.

Conclusions

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first parameterized approximation results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

Thank you! Questions?

