Complexity and Approximability for Parameterized Constraint Satisfaction Problems

Holger Dell, Eunjung Kim, Michael Lampis, Valia Mitsou, Tobias Mömke

Institute for Computer Science and Control, Hungarian Academy of Sciences

GROW 2015, Aussois (France)

(Boolean) Constraint Satisfaction Problem (CSP):

- A set of variables X over $\{0, 1\}$.
- A set of constraints ϕ involving positive and negative appearances of the variables (literals).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Boolean) Constraint Satisfaction Problem (CSP):

- A set of variables X over $\{0,1\}$.
- A set of constraints ϕ involving positive and negative appearances of the variables (literals).

Decide whether there exists an assignment on X that satisfies:

- (ALLCSP) all the constraints in ϕ ;
- (MAXCSP) at least k constraints in ϕ (given some value k).

イロト 不得 トイヨト イヨト 二日

(Boolean) Constraint Satisfaction Problem (CSP):

- A set of variables X over {0,1}.
- A set of constraints ϕ involving positive and negative appearances of the variables (literals).

Decide whether there exists an assignment on X that satisfies:

- (ALLCSP) all the constraints in ϕ ;
- (MAXCSP) at least k constraints in ϕ (given some value k). Example: CNFSAT is a CSP.

 $\phi = (\neg x \lor z) \land (x \lor y \lor \neg w) \land (\neg z \lor w)$ $X = \{x, y, z, w\}.$

イロト 不得 トイヨト イヨト 二日

 Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995], [Khanna et al. 2001].

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995], [Khanna et al. 2001].
- Study special cases (parameterized complexity!)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995], [Khanna et al. 2001].
- Study special cases (parameterized complexity!)
- [Samer, Szeider 2010]: Classification of an extensive list of parameters including # vars, # cons, max constraint size (arity), max # of var occurence ...

イロト 不得 トイヨト イヨト 二日

- Almost all interesting (Max)CSP are NP-hard [Schaefer 1978] and APX-hard [Creignou 1995], [Khanna et al. 2001].
- Study special cases (parameterized complexity!)
- [Samer, Szeider 2010]: Classification of an extensive list of parameters including # vars, # cons, max constraint size (arity), max # of var occurence ...
- ... Structural parameterizations

イロト 不得 トイヨト イヨト 二日

- Define some graph structure of ϕ .
- Study CSPs for special graph classes.

- (同) - (目) - (目)

• Define some graph structure of ϕ .

<ロ> <同> <同> < 同> < 同>

Incidence graph representation of a CSP

- (Unsigned) variables and constraints are represented by vertices;
- a constraint vertex is connected to a variable vertex iff the corresponding constraint involves the corresponding variable.

Figure: The incidence graph representation of the previous formula $(\neg x \lor z) \land (x \lor y \lor \neg w) \land (\neg z \lor w).$

• Study CSPs for special graph classes.

<ロ> (日) (日) (日) (日) (日)

Example classes (CNFSAT)

• Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).

(4 同) (4 回) (4 回)

Example classes (CNFSAT)

- Low degree: Bounding degree of incidence graph doesn't help (3CNFSAT where every variable appears at most 3 times is NP-complete).
- Acyclicity: Start from the leaves and work your way up $\overline{(poly-time)}$.

(人間) ト く ヨ ト く ヨ ト

Parameter map: $q \leftarrow p$ (which reads 'q dominates p') between two parameters means that q is bounded when p is bounded.

□ > < = > <

Goal: design algorithms for most dominant parameter (hold downward) and hardness for least dominant (hold upward).

New approach: study FPT approximations to evade hardness. In this talk we examine the existence of FPT Approximation Schemes.

Definition

FPT Approximation Scheme (FPT-AS): $\forall \epsilon > 0$ there is an $(1 - \epsilon)$ -approximation algorithm running in time $O(f(\epsilon, k) \cdot \text{poly}(n))$.

▲ □ ▶ ▲ □ ▶ ▲

or constraints;

An assignment satisfies such a constraint if at least one literal is made true.

< 同 > < 回 > < 回 >

- or constraints;
- and constraints;

An assignment satisfies such a constraint if all literals are made true.

< 同 > < 回 > < 回 >

- or constraints;
- and constraints;
- oprity constraints;

An assignment satisfies such a constraint if the sum of the literals is odd - or even.

伺 と く ヨ と く ヨ と

- or constraints;
- and constraints;
- *parity* constraints;
- Majority constraints.

An assignment satisfies such a constraint if at least half of the literals are made true.

伺 ト イ ヨ ト イ ヨ ト

Overview of Results

Figure: Diagram for CNFSAT and MAXCNFSAT.

Figure: Diagram for MAXPARITY.

Figure: Diagram for MAJORITY and MAXMAJORITY.

A 10

æ

<ロ> (日) (日) (日) (日) (日)

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

/⊒ > < ∃ >

 $\rm MAXCNFSAT$ parameterized by incidence treewidth (tw*) is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

• = • •

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

Hardness even holds for a more restricted parameter *modular treewidth* [Paulusma, Slivovsky, Szeider 2013].

 $\rm MAXCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

Hardness even holds for a more restricted parameter *modular treewidth* [Paulusma, Slivovsky, Szeider 2013].

ightarrow We extend W[1]-hardness to incidence neighborhood diversity (nd^*) .

/□ ▶ < 글 ▶ < 글

 $\rm MAxCNFSAT$ parameterized by incidence treewidth ($\rm tw^*)$ is FPT.

Theorem [Ordyniak, Paulusma, Szeider 2013]

 $\rm CNFSAT$ parameterized by $\rm cw^*$ is W[1]-hard.

Hardness even holds for a more restricted parameter *modular treewidth* [Paulusma, Slivovsky, Szeider 2013].

ightarrow We extend W[1]-hardness to incidence neighborhood diversity (nd^*).

ightarrow We also present an FPT-AS for $cw^*.$

□ ▶ < □ ▶ < □</p>

Definition [Lampis 2010]

A graph has neighborhood diversity k if its vertices can be separated into k independent sets or cliques where any two vertices in a set have common neighborhood. Variables Clauses

A 10

(4) (3) (4) (4) (4)

Formula ϕ has $\operatorname{nd}^*(G_\phi) \leq k$

There are at most k blocks of variables and clauses, where:

- variables in the same block belong in the same clauses;
- clauses in the same block involve the same variables.

Variables Clauses

(4) (2) (4)

Formula ϕ has $\operatorname{nd}^*(G_\phi) \leq k$

Positive and negative appearances of variables can:

- produce exponentially many clauses;
- encode exponentially many items in binary.

Variables Clauses

4 3 b

Neighborhood diversity

Theorem

CNFSAT parameterized by the incidence neighborhood diversity $nd^*(G_{\phi})$ is W[1]-hard.

Variables Clauses

▲□ ▶ ▲ □ ▶ ▲ □

Theorem

MAXCNFSAT parameterized by cw^* admits an FPT-AS.

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 10/1

- 4 回 > - 4 回 > - 4 回 >

Theorem

MAXCNFSAT parameterized by cw^* admits an FPT-AS.

Reminder

FPT-AS (FPT Approximation Scheme) for a maximization problem parameterized by $k: \forall \epsilon > 0$ there exists an $(1 - \epsilon)$ -approximation algorithm running in $O(f(\epsilon, k) \cdot \text{poly}(n))$.

(人間) (人) (人) (人) (人) (人)

An FPT-AS for MaxCNFSat parameterized by cw^*

Arrange the clauses in increasing order of arity (0 to a).

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 11/1

- 4 同 ト 4 目 ト 4 目 ト

Arrange the clauses in increasing order of arity (0 to a).

Split them into big (arity at least $g(\epsilon)$), small (arity at most $g'(\epsilon)$, and medium.

Consider the following cases:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

(Almost) all clauses are big:

- 4 同 6 4 日 6 4 日 6

(Almost) all clauses are big:

ignore small clauses;

- 4 同 ト 4 目 ト 4 目 ト

(Almost) all clauses are big:

- ignore small clauses;
- a random assignment satisfies $\geq (1 \epsilon)(1 2^{-g(\epsilon)}) \cdot m$ clauses (with high probability).

- 4 同 6 4 日 6 4 日 6

(Almost) all clauses are big:

- ignore small clauses;
- a random assignment satisfies $\geq (1 \epsilon)(1 2^{-g(\epsilon)}) \cdot m$ clauses (with high probability).
- Since m ≥ OPT, SOL ≥ (1 − ϵ')OPT, for some ϵ' depending on ϵ.

・ロト ・同ト ・ヨト ・ヨト

(Almost) all clauses are small:

イロト イポト イヨト イヨト

(Almost) all clauses are small:

ignore large clauses;

(Almost) all clauses are small:

- ignore large clauses;
- degree on one side of the incidence graph is bounded \rightarrow no large biclique subgraphs;

(Almost) all clauses are small:

- ignore large clauses;
- degree on one side of the incidence graph is bounded → no large biclique subgraphs;
- By [Gurski, Wanke 2000], the incidence graph has bounded treewidth → solve optimally the remaining small clauses;

・ロト ・同ト ・ヨト ・ヨト

(Almost) no medium-size clauses and B, S are balanced:

(Almost) no medium-size clauses and B, S are balanced:

- variable occurences $(B) \ge |B| \cdot D = \frac{m \cdot d}{\epsilon^2}$;
- variable occurences $(S) \leq |S| \cdot d \leq m \cdot d$.

(人間) ト く ヨ ト く ヨ ト

(Almost) no medium-size clauses and B, S are balanced:

- variable occurences $(B) \ge |B| \cdot D = \frac{m \cdot d}{\epsilon^2}$;
- variable occurences(S) $\leq |S| \cdot d \leq m \cdot d$.
- $\rightarrow \exists y \in V$ that appears $1/\epsilon^2$ more times in *B* than in *S*.

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties:

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties: • Y hits few clauses of S (call this set S');

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complexity & Approximability for Parameterized CSP 11/1

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties: • Y hits few clauses of S (call this set S');

| 4 同 1 4 三 1 4 三 1

(Almost) no medium-size clauses and B, S are balanced: From the previous observation, we iteratively create a set of variables Y with the following properties: • Y hits few clauses of S (call this set S');

 at most e² clauses of B have ≤ 1/e neighbors in Y (call this set B').

Randomly assigning Y should satisfy whp $\geq (1 - \epsilon^2) \cdot (1 - 2^{-1/\epsilon})$ of $B \setminus B'$, while $S \setminus S'$ can be solved optimally.

| 4 同 1 4 三 1 4 三 1

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

(4 同) (4 日) (4 日)

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

$$0 \qquad \frac{1}{\epsilon} \quad \frac{L}{\epsilon} \quad \frac{L^2}{\epsilon} \qquad \cdots \qquad \frac{L^{1/\epsilon}}{\epsilon} \quad a_{\underline{clause sizes}}$$

Define $1/\epsilon + 1$ independent intervals of medium-arity clauses (right-left bounds are an $L(=\epsilon^{-4})$ -factor apart).

イロト 不得 トイヨト イヨト 二日

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

There should be at least one interval [d, D] $(D = L \cdot d)$ containing $\leq \epsilon \cdot m$ clauses.

イロト イポト イヨト イヨト

- 3

Lemma

We can always find a small set M ($|M| \le \epsilon \cdot m$) of medium-size clauses (arities $d \sim D$).

Removing them divides the clauses into small (S) and big (B).

- 4 同 6 4 日 6 4 日 6

• Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.

- 4 同 ト 4 目 ト 4 目 ト

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).

- 4 同 6 4 日 6 4 日 6

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
 If |S| ≤ ε² ⋅ m

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;

- Find interval [d,D] of at most $\epsilon \cdot m$ clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of *B*.

- 4 同 6 4 日 6 4 日 6

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore *S*;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$

イロト 不得 トイヨト イヨト 二日

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \le \epsilon^2 \cdot m$
 - Ignore *S*;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;

イロト 不得 トイヨト イヨト 二日

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S has bounded treewidth \rightarrow solve optimally.

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of *B*.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S has bounded treewidth \rightarrow solve optimally.
- Otherwise

イロト 不得 トイヨト イヨト 二日

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S has bounded treewidth \rightarrow solve optimally.
- Otherwise
 - Find set of variables Y as in the last case and set it randomly to satisfy most of B.

イロト 不得 トイヨト イヨト 二日

- Find interval [d,D] of at most ε · m clauses of medium arities as in the previous Lemma and ignore them.
- Split remaining clauses into S (arity < d) and B (arity > D).
- If $|S| \leq \epsilon^2 \cdot m$
 - Ignore S;
 - Randomly assign variables to satisfy most of B.
- If at most $|B| \leq \epsilon^2 \cdot m$
 - Ignore *B*;
 - G_S has bounded treewidth \rightarrow solve optimally.
- Otherwise
 - Find set of variables Y as in the last case and set it randomly to satisfy most of B.
 - Ignore part of S that contains variables from Y and solve the rest optimally.

Similarities

• DNFSAT and PARITY are both in P.

- 4 回 > - 4 回 > - 4 回 >

Similarities

- DNFSAT and PARITY are both in P.
- MAXDNFSAT and MAXPARITY are both APX-hard.

< 同 > < 国 > < 国 >

Similarities

- DNFSAT and PARITY are both in P.
- MAXDNFSAT and MAXPARITY are both APX-hard.
- MAXDNFSAT and MAXPARITY are both FPT parameterized by tw*.

Similarities

- DNFSAT and PARITY are both in P.
- MAXDNFSAT and MAXPARITY are both APX-hard.
- MAXDNFSAT and MAXPARITY are both FPT parameterized by tw*.

Different behavior for dense structural parameters

 MAXDNFSAT parameterized by nd* does not admit FPT-AS (unless FPT=W[1]);

.⊒ . ►

A 10

Similarities

- DNFSAT and PARITY are both in P.
- MAXDNFSAT and MAXPARITY are both APX-hard.
- MAXDNFSAT and MAXPARITY are both FPT parameterized by tw^* .

Different behavior for dense structural parameters

- MAXDNFSAT parameterized by nd* does not admit FPT-AS (unless FPT=W[1]);
- MAXPARITY parameterized by cw^{*} is FPT.

æ

э

▲ 同 ▶ ▲ 国 ▶

Dell, Kim, Lampis, Mitsou, Mömke Complexity & Approximability for Parameterized CSP 15 / 1

Corollary (tweak of W-hardness for CNFSAT)

MAJORITY parameterized by nd^* is W[1]-hard.

同下 イヨト イヨ

Corollary (tweak of W-hardness for CNFSAT)

MAJORITY parameterized by nd^* is W[1]-hard.

 \rightarrow MAJORITY parameterized by tw^{*} is W[1]-hard.

▲□ ▶ ▲ □ ▶ ▲ □

Corollary (tweak of W-hardness for CNFSAT)

MAJORITY parameterized by nd^* is W[1]-hard.

 $\rightarrow \rm MAJORITY$ parameterized by $\rm tw^*$ is W[1]-hard. In fact,

Theorem

MAJORITY parameterized by fvs^{*} is W[1]-hard.

・ 同 ト ・ ヨ ト ・ ヨ

Corollary (tweak of W-hardness for CNFSAT)

MAJORITY parameterized by nd^* is W[1]-hard.

 $\rightarrow \rm MAJORITY$ parameterized by $\rm tw^*$ is W[1]-hard. In fact,

Theorem

MAJORITY parameterized by fvs* is W[1]-hard.

Theorem

MAXMAJORITY parameterized by vc^* is FPT.

▲□ ▶ ▲ □ ▶ ▲ □

Corollary (tweak of W-hardness for CNFSAT)

MAJORITY parameterized by nd^* is W[1]-hard.

 $\rightarrow \rm MAJORITY$ parameterized by $\rm tw^*$ is W[1]-hard. In fact,

Theorem

MAJORITY parameterized by fvs^{*} is W[1]-hard.

Theorem

MAXMAJORITY parameterized by vc^* is FPT.

Theorem

MAXMAJORITY *parameterized by fvs*^{*} *admits an FPT-AS*.

MAXMAJORITY parameterized by vc^{\ast} is FPT

Remark 1

vc^{*} dominates both n = #vars and m = #cons.

- 4 回 2 - 4 □ 2 - 4 □

$MAXMAJORITY\xspace$ parameterized by vc^* is FPT

Remark 1

vc^{*} dominates both n = #vars and m = #cons.

Remark 2

We can reduce MAXMAJORITY parameterized by vc^* to MAXMAJORITY parameterized by m.

< 同 > < 回 > < 回 >

MAXMAJORITY parameterized by vc^{\ast} is FPT

Remark 1

vc^{*} dominates both n = #vars and m = #cons.

Remark 2

We can reduce MAXMAJORITY parameterized by vc^* to MAXMAJORITY parameterized by m.

Remark 3

We can reduce MAXMAJORITY to MAJORITY.

< 同 > < 回 > < 回 >

$MAXMAJORITY\xspace$ parameterized by vc^* is FPT

Remark 1

vc^{*} dominates both n = #vars and m = #cons.

Remark 2

We can reduce MAXMAJORITY parameterized by vc^* to MAXMAJORITY parameterized by m.

Remark 3

We can reduce MAXMAJORITY to MAJORITY.

Remark 4

We can reduce MAJORITY to an ILP with 3^m variables \rightarrow FPT [Lenstra 1983].

- 4 同 6 4 回 6 4 回 6

- (同) (回) (回) - 回

• If $m < 2 \cdot \text{fvs}^*/\epsilon$, the graph reduces to the bounded *m* case.

- If $m < 2 \cdot \text{fvs}^*/\epsilon$, the graph reduces to the bounded *m* case.
- If $m \geq 2 \cdot \mathrm{fvs}^* / \epsilon$, then $\mathrm{fvs}^* \leq m \cdot \epsilon / 2$:

- If $m < 2 \cdot \text{fvs}^*/\epsilon$, the graph reduces to the bounded *m* case.
- If $m \geq 2 \cdot \mathrm{fvs}^* / \epsilon$, then $\mathrm{fvs}^* \leq m \cdot \epsilon / 2$:
 - ignore fvs^* ;
 - solve optimally the acyclic graph.

< 回 > < 回 > < 回 > … 回

- If $m < 2 \cdot \text{fvs}^* / \epsilon$, the graph reduces to the bounded m case.
- If $m \geq 2 \cdot \mathrm{fvs}^* / \epsilon$, then $\mathrm{fvs}^* \leq m \cdot \epsilon / 2$:
 - ignore fvs^* ;
 - solve optimally the acyclic graph.

In order to obtain the desired outcome in the second case, we need linear dependence of OPT and m:

(4月) (3日) (3日) 日

- If $m < 2 \cdot \text{fvs}^* / \epsilon$, the graph reduces to the bounded m case.
- If $m \geq 2 \cdot \mathrm{fvs}^* / \epsilon$, then $\mathrm{fvs}^* \leq m \cdot \epsilon / 2$:
 - ignore fvs^* ;
 - solve optimally the acyclic graph.

In order to obtain the desired outcome in the second case, we need linear dependence of OPT and m:

• $OPT \ge \frac{m}{2}$ (if an assignment doesn't satisfy at least $\frac{m}{2}$ constraints, it's negation does).

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first **parameterized approximation** results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first **parameterized approximation** results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first **parameterized approximation** results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first **parameterized approximation** results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

Summary of Results

Figure: Diagram for CNFSAT and MAXCNFSAT.

Figure: Diagram for MAXPARITY.

Figure: Diagram for MAJORITY and MAXMAJORITY.

- We studied four natural boolean CSPs (or, and, parity, majority constraints).
- Structural parameterizations (incidence graph).
- Provided some of the first **parameterized approximation** results for CSP.
- Complexity-wise, studied CSPs exhibit wildly different behaviors (FPT, W-hard admitting FPT-AS, no FPT-AS unless FPT=W[1]).
- Complete classification?

Thank you! Questions?

æ