Polynomial Fixed-Parameter Algorithms: A Case Study for Longest Path on Interval Graphs

Archontia Giannopoulou¹ George B. Mertzios² Rolf Niedermeier³

¹Institute of Informatics, University of Warsaw, Poland

²School of Engineering and Computing Sciences, Durham University, UK

³Institute of Software Engineering and Theoretical Computer Science, TU Berlin, Germany

Workshop on Graph Classes, Optimization, and Width Parameters (GROW)

October 2015

Fixed-parameter algorithms

For many combinatorial problems the best known (exact) algorithms are too slow:

- exponential running times (for NP-hard problems)
- polynomials of high degree, e.g. $O(n^3)$, $O(n^4)$, ... (for problems in P)

For many combinatorial problems the best known (exact) algorithms are too slow:

- exponential running times (for NP-hard problems)
- polynomials of high degree, e.g. $O(n^3)$, $O(n^4)$, ... (for problems in P)

The successful "FPT approach" for exact computation:

- identify an appropriate parameter k that "causes" large running times
- design algorithms that separate the dependency of the running time from the input size n and the parameter k

More formally:

- a fixed-parameter algorithm solves a problem with input size *n* and parameter *k* in $f(k) \cdot n^{O(1)}$ time
- \Rightarrow whenever k is small, the algorithm is efficient for every input size n

Fixed-parameter algorithms

- Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g. [Downey, Fellows, Parameterized Complexity, 1999]
 [Flum, Grohe, Parameterized Complexity Theory, 2006]
 [Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
 [Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
 [Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk², Saurabh, Parameterized Algorithms, 2015]
- So far, FPT research focused on intractable (NP-hard) problems
 - where the function f(k) is unavoidably exponential (assuming $P \neq NP$)

Fixed-parameter algorithms

- Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g. [Downey, Fellows, Parameterized Complexity, 1999]
 [Flum, Grohe, Parameterized Complexity Theory, 2006]
 [Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
 [Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
 [Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk², Saurabh, Parameterized Algorithms, 2015]
- So far, FPT research focused on intractable (NP-hard) problems
 where the function f(k) is unavoidably exponential (assuming P≠NP)
- There is a growing awareness about the polynomial factors n^{O(1)} (which were usually neglected), e.g.:
 - computing the treewidth: [Bodlaender, SIAM J. on Computing, 1996]
 - computing the crossing number: [Kawarabayashi, Reed, STOC, 2007]
 - problems from industrial applications: [van Bevern, PhD Thesis, 2014]
 - these works emphasize "linear time" in the title, instead of "FPT"

- Although polynomially solvable problems are theoretically tractable:
 - often the best known algorithms are not efficient in practice, e.g.
 - Linear Programming on arbitrary instances (interior point algorithms)
 - Matrix Multiplication (currently in $O(n^{2.373})$ time)
 - Maximum Matching (in $O(m\sqrt{n})$ time worst-case)

- Although polynomially solvable problems are theoretically tractable:
 - often the best known algorithms are not efficient in practice, e.g.
 - Linear Programming on arbitrary instances (interior point algorithms)
 - Matrix Multiplication (currently in $O(n^{2.373})$ time)
 - Maximum Matching (in $O(m\sqrt{n})$ time worst-case)
- In certain applications (e.g. when working with massive data sets):
 - even $O(n^2)$ -time is considered inefficient
- Reducing the worst-case complexity:
 - significant improvements are often difficult (or impossible)

- Although polynomially solvable problems are theoretically tractable:
 - often the best known algorithms are not efficient in practice, e.g.
 - Linear Programming on arbitrary instances (interior point algorithms)
 - Matrix Multiplication (currently in $O(n^{2.373})$ time)
 - Maximum Matching (in $O(m\sqrt{n})$ time worst-case)
- In certain applications (e.g. when working with massive data sets):
 - even $O(n^2)$ -time is considered inefficient
- Reducing the worst-case complexity:
 - significant improvements are often difficult (or impossible)
- Towards reducing polynomial factors $n^{O(1)}$:
 - the "FPT approach" can help refining the complexity of problems in P
- Appropriate parameterizations of a problem within P:
 - can reveal what makes it "far from being solvable in linear time"
 - in the same spirit as classical FPT algorithms (why is it "far from P")

Formally, given a problem Π with instance size *n*:

• for which there exists an $O(n^c)$ -time algorithm

we aim at detecting an appropriate parameter k such that:

• there exists an $f(k) \cdot n^{c'}$ -time algorithm where

c' < c and
f(k) depends only on k

Formally, given a problem Π with instance size *n*:

• for which there exists an $O(n^c)$ -time algorithm

we aim at detecting an appropriate parameter k such that:

• there exists an $f(k) \cdot n^{c'}$ -time algorithm where

c' < c and
f(k) depends only on k

Definition (refinement of FPT)

For every polynomially bounded function p(n), the class FPT(p(n)) contains the problems solvable in $f(k) \cdot p(n)$ time, where f(k) is an arbitrary (possibly exponential) function of k.

Formally, given a problem Π with instance size *n*:

• for which there exists an $O(n^c)$ -time algorithm

we aim at detecting an appropriate parameter k such that:

• there exists an $f(k) \cdot n^{c'}$ -time algorithm where

c' < c and
f(k) depends only on k

Definition (refinement of FPT)

For every polynomially bounded function p(n), the class FPT(p(n)) contains the problems solvable in $f(k) \cdot p(n)$ time, where f(k) is an arbitrary (possibly exponential) function of k.

For a problem within P:

• it is possible that f(k) can become polynomial on k

• in wide contrast to FPT algorithms for NP-hard problems!

5 / 24

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))(Polynomial Fixed-Parameter Tractable) contains the problems solvable in $O(k^t \cdot p(n))$ time for some constant $t \ge 1$, i.e. $f(k) = k^t$.

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))(Polynomial Fixed-Parameter Tractable) contains the problems solvable in $O(k^t \cdot p(n))$ time for some constant $t \ge 1$, i.e. $f(k) = k^t$.

For the case where p(n) = n, the class P-FPT(n) is called PL-FPT (*Polynomial-Linear Fixed-Parameter Tractable*).

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))(Polynomial Fixed-Parameter Tractable) contains the problems solvable in $O(k^t \cdot p(n))$ time for some constant $t \ge 1$, i.e. $f(k) = k^t$.

For the case where p(n) = n, the class P-FPT(n) is called PL-FPT (*Polynomial-Linear Fixed-Parameter Tractable*).

This "FPT inside P" theme:

- interesting research direction
- too little explored so far
- few known results, scattered around in the literature

We propose three desirable algorithmic properties:

- the running time should depend polynomially on the parameter k \Rightarrow the problem is in P-FPT(p(n)), for some polynomial p(n)
- When k is constant, the running time should be as close to linear as possible
 - \Rightarrow the problem is in PL-FPT, or at least in P-FPT(p(n)) where $p(n) \approx n$
- the parameter value (or a good approximation) should be computable efficiently (preferably in linear time) for arbitrary parameter values

We propose three desirable algorithmic properties:

- the running time should depend polynomially on the parameter k \Rightarrow the problem is in P-FPT(p(n)), for some polynomial p(n)
- When k is constant, the running time should be as close to linear as possible
 - \Rightarrow the problem is in PL-FPT, or at least in P-FPT(p(n)) where $p(n) \approx n$
- the parameter value (or a good approximation) should be computable efficiently (preferably in linear time) for arbitrary parameter values

The "FPT inside P" framework should be systematically studied:

- exploiting the rich toolbox of parameterized algorithm design
 - e.g. data reductions, kernelization, ...
- having these three properties as a "compass"

Related work

Shortest path problems

- Some polynomial algorithms can be "tuned" with respect to specific parameters:
 - classic Dijkstra's algorithm for shortest paths: $O(m + n \log n)$ time
 - can be adapted to: O(m + n log k) time, where k is the number of distinct edge weights
 [Orlin, Madduri, Subramani, Williamson, J. of Discr. Alg., 2010]
 [Koutis, Miller, Peng, FOCS, 2011]
- In order to prove the efficiency of known heuristics for road networks:
 - the parameter highway dimension has been introduced [Abraham, Fiat, Goldberg, Werneck, *SODA*, 2010]
 - Dijkstra's algorithm is too slow in practice

Conclusion: Adopting a parameterized view may be of significant practical interest, even for quasi-linear algorithms

Related work Maximum flow problems

- For graphs made planar by deleting *k* crossing edges:
 - maximum flow in $O(k^3 \cdot n \log n)$ time [Hochstein, Weihe, SODA, 2007]
 - an embedding and the k crossing edges are given in the input
 - \Rightarrow this violates Property 3 (no known good approximation of k)
- For graphs with bounded genus g and sum of capacities C:
 - maximum flow in O(g⁸ · n log² n log² C) time
 [Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
 - an embedding and the genus g are given in the input
 - \Rightarrow this violates Property 3 (no known good approximation of g)

Related work Maximum flow problems

- For graphs made planar by deleting *k* crossing edges:
 - maximum flow in $O(k^3 \cdot n \log n)$ time [Hochstein, Weihe, SODA, 2007]
 - an embedding and the k crossing edges are given in the input
 - \Rightarrow this violates Property 3 (no known good approximation of k)
- For graphs with bounded genus g and sum of capacities C:
 - maximum flow in O(g⁸ · n log² n log² C) time
 [Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
 - an embedding and the genus g are given in the input
 - \Rightarrow this violates Property 3 (no known good approximation of g)
- Furthermore, when parameterized by the treewidth k:
 - multiterminal flow in linear time
 - [Hagerup, Katajainen, Nishimura, Ragde, J. Comp. & Syst. Sci, 1998]
 - Wiener index in near-linear time [Cabello, Knauer, Comp. Geom., 2009]
 - both with exponential dependency on k
 - \Rightarrow this violates Property 1 (exponential f(k))

ヘロト 不得下 不足下 不足下

Related work Linear Programming

- Due to a famous result of Megiddo [Megiddo, J. of the ACM, 1984]:
 - Linear Programming in linear time for fixed dimension d (# variables)
 - the multiplicative factor is $f(d) = 2^{O(2^d)}$
 - \Rightarrow this violates Property 1 (exponential f(k)), but is still in P-FPT(n)
 - \Rightarrow no guarantee for practically efficient algorithms
 - can be seen as a precursor of "FPT inside P"

Related work

Stringology

- String Matching with k Mismatches:
 - "find in a length-*n* string all occurrences of a length-*m* pattern with at most *k* errors"
 - in $O(m^2 + nk^2)$ [Landau, Vishkin, FOCS, 1985]
 - in $O(m \log k + nk^2)$ [Landau, Vishkin, J. Comp. & Syst. Sci, 1988]
 - in O(nk) [Landau, Vishkin, J. of Algorithms, 1989]
 - in $O(n\sqrt{k \log k})$ [Amir, Lewenstein, Porat, J. of Algorithms, 2004]
- All these algorithms are linear in *n*
 - as also in the extreme case k = 0 errors

Related work

Stringology

- String Matching with k Mismatches:
 - "find in a length-*n* string all occurrences of a length-*m* pattern with at most *k* errors"
 - in $O(m^2 + nk^2)$ [Landau, Vishkin, FOCS, 1985]
 - in $O(m \log k + nk^2)$ [Landau, Vishkin, J. Comp. & Syst. Sci, 1988]
 - in O(nk) [Landau, Vishkin, J. of Algorithms, 1989]
 - in $O(n\sqrt{k \log k})$ [Amir, Lewenstein, Porat, J. of Algorithms, 2004]
- All these algorithms are linear in *n*
 - as also in the extreme case k = 0 errors
- The parameter k is directly defined by the problem itself (and given with the input)
- Our approach goes beyond that:
 - we try to detect the appropriate parameter that causes a high polynomial time complexity

- A "proof of concept" example: kernelization of Maximum Matching
 - parameter k =solution size
 - there exists a "Buss-like" kernel with $O(k^2)$ vertices and edges
 - it can be computed in O(kn) time
 - \Rightarrow total running time: $O(kn + k^3)$
 - \Rightarrow Maximum Matching is in PL-FPT for parameter k

Kernelization of Maximum Matching

An illustrative example

A kernelization algorithm similar to Buss's for Vertex Cover:

• parameter k =solution size

Reduction Rule 1

If deg(v) > 2(k-1) for some $v \in V(G)$ then return $(G \setminus \{v\}, k-1)$.

Safeness (idea): if $(G \setminus \{v\}, k-1)$ is a YES-instance, then adding v can always produce a matching of size $\geq k$

in a matching of size k − 1 in G \ {v}, there is always
 "one more edge" in G

Kernelization of Maximum Matching

An illustrative example

A kernelization algorithm similar to Buss's for Vertex Cover:

• parameter k =solution size

Reduction Rule 1

If deg(v) > 2(k-1) for some $v \in V(G)$ then return $(G \setminus \{v\}, k-1)$.

Safeness (idea): if $(G \setminus \{v\}, k-1)$ is a YES-instance, then adding v can always produce a matching of size $\geq k$

• in a matching of size k - 1 in $G \setminus \{v\}$, there is always "one more edge" in G

Reduction Rule 2

If deg(v) = 0 for some $v \in V(G)$ then return $(G \setminus \{v\}, k)$.

Safeness: trivial

George Mertzios (Durham)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Iteratively apply Reduction Rule 1:

• in total O(kn) time

 $\Rightarrow 0 \leq \deg(v) \leq 2(k-1)$ for every (remaining) vertex v

Iteratively apply Reduction Rule 2:

- again in total O(kn) time
- $\Rightarrow 1 \leq \deg(v) \leq 2(k-1)$ for every (remaining) vertex v

Iteratively apply Reduction Rule 1:

• in total O(kn) time

 $\Rightarrow 0 \leq \deg(v) \leq 2(k-1)$ for every (remaining) vertex v

Iteratively apply Reduction Rule 2:

- again in total O(kn) time
- $\Rightarrow 1 \leq \deg(v) \leq 2(k-1)$ for every (remaining) vertex v

We can easily prove for the remaining graph G':

Lemma

$$|V(G')|, |E(G')| \le (2k-1) \cdot \operatorname{mm}(G').$$

where $\mathbf{mm}(G') = \text{size of maximum matching in } G'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Putting things together:

- compute the reduced graph G' (by Red. Rules 1 + 2)
 - in total O(kn) time
- suppose we remove *r* vertices by Reduction Rule 1
 - if $r \ge k$ then stop and return YES
 - else k' = k r
- if G' has more than (k'-1)(2k'-1) vertices or edges
 - then stop and return YES
 - else apply the best known algorithm for Matching on G'

Putting things together:

- compute the reduced graph G' (by Red. Rules 1 + 2)
 - in total O(kn) time
- suppose we remove *r* vertices by Reduction Rule 1
 - if $r \ge k$ then stop and return YES
 - else k' = k r
- if G' has more than (k'-1)(2k'-1) vertices or edges
 - then stop and return YES
 - else apply the best known algorithm for Matching on G'

The best known worst-case algorithm:

• in $O(m\sqrt{n}) = O(k^3)$ time [Micali, Vazirani, FOCS, 1980]

 \Rightarrow total running time: $O(kn + k^3)$ time

- Main technical result: Longest Path on Interval Graphs
 - Longest Path is polynomially solvable in several "small" graph classes:
 - weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, *ISAAC*, 2004]

and only in a few "non-trivial" graph classes:

• interval graphs, cocomparability graphs, both in *O*(*n*⁴) time [loannidou, Mertzios, Nikolopoulos, *Algorithmica*, 2011] [Mertzios, Corneil, *SIAM J. on Discrete Mathematics*, 2012]

- Main technical result: Longest Path on Interval Graphs
 - Longest Path is polynomially solvable in several "small" graph classes:
 - weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, *ISAAC*, 2004]
 - and only in a few "non-trivial" graph classes:
 - interval graphs, cocomparability graphs, both in O(n⁴) time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]
 - On proper interval graphs:
 - trivially solvable in linear time
 - $\bullet \ \ \text{connected} \Rightarrow \text{Hamiltonian}$
 - \Rightarrow parameter distance to triviality:
 - k = proper interval (vertex) deletion number
 - k can be 4-approximated in O(n+m) time

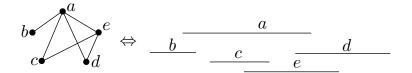
- Main technical result: Longest Path on Interval Graphs
 - Longest Path is polynomially solvable in several "small" graph classes:
 - weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, *ISAAC*, 2004]
 - and only in a few "non-trivial" graph classes:
 - interval graphs, cocomparability graphs, both in O(n⁴) time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]
 - On proper interval graphs:
 - trivially solvable in linear time
 - $\bullet \ \ \text{connected} \Rightarrow \text{Hamiltonian}$
 - \Rightarrow parameter distance to triviality:
 - k = proper interval (vertex) deletion number
 - k can be 4-approximated in O(n+m) time

Our Algorithm: compute a longest path in $O(k^9n)$ time

 \Rightarrow Longest Path on Interval Graphs is in PL-FPT for parameter k

Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

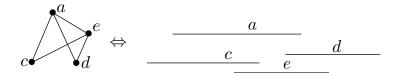


Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

Definition

An interval graph G is a proper interval graph, if there exists an interval representation of G where no interval is properly included in another one.



Definition

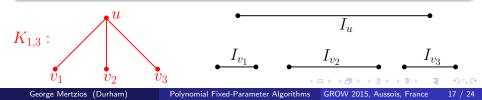
A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

Definition

An interval graph G is a proper interval graph, if there exists an interval representation of G where no interval is properly included in another one.

Theorem (Roberts, 1969)

An interval graph G is a proper interval graph \iff G does not include any claw $K_{1,3}$ as induced subgraph.



Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set *D*:

- Cai's algorithm (one forbidden subgraph): in O(4^{|D|} poly(n)) time [Cai, Information Processing Letters, 1996]
- polynomial time exact computation: Open problem!

Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set *D*:

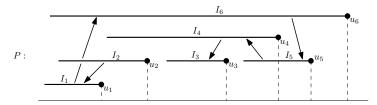
- Cai's algorithm (one forbidden subgraph): in O(4^{|D|} poly(n)) time [Cai, Information Processing Letters, 1996]
- polynomial time exact computation: Open problem!

We compute a 4-approximation of |D| in O(n+m) time:

- scan from left to right in the interval representation
- detect a claw $K_{1,3}$
- remove all 4 vertices of the claw
- iterate

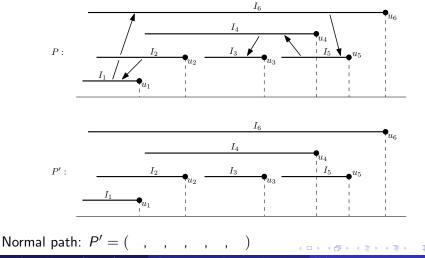
- Our proofs are based on the notion of normal paths in interval graphs. [loannidou, Mertzios, Nikolopoulos, *Algorithmica*, 2011] (a.k.a. straight paths: [Damaschke, *Discr. Math*, 1993])
- Main idea:
 - start with the leftmost vertex of the path
 - always continue with the leftmost unvisited neighbor of the current vertex

Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



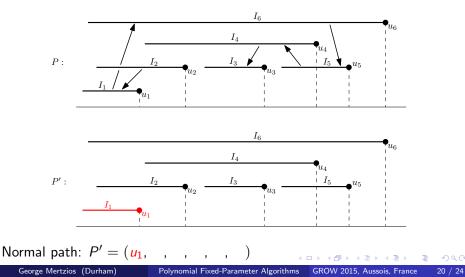
э

Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$

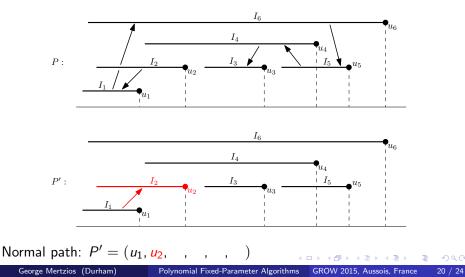


George Mertzios (Durham)

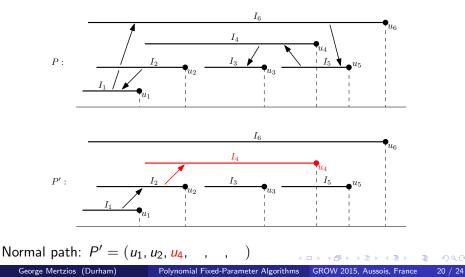
Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



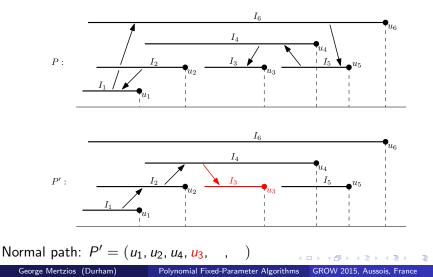
Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$

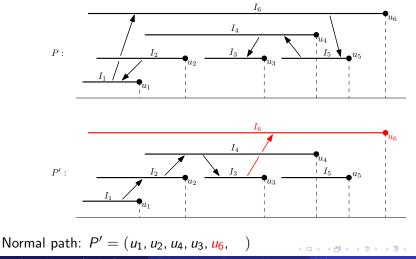


Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



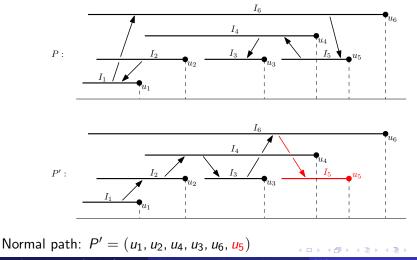
20 / 24

Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



George Mertzios (Durham)

Example: path
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



George Mertzios (Durham)

Given a proper interval deletion set *D* of *G*, where |D| = k: a partition $G \setminus D$ into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets

- **1** partition $G \setminus D$ into:
 - a collection of "reducible" sets and
 - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
 - replace every reducible set with one weighted interval
 - O(n) such new intervals

- partition $G \setminus D$ into:
 - a collection of "reducible" sets and
 - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
 - replace every reducible set with one weighted interval
 - O(n) such new intervals
- exhaustively apply a second data reduction rule
 - replace every weakly reducible set with O(k) weighted intervals
 - $O(k^3)$ such new intervals

- partition $G \setminus D$ into:
 - a collection of "reducible" sets and
 - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
 - replace every reducible set with one weighted interval
 - O(n) such new intervals
- exhaustively apply a second data reduction rule
 - replace every weakly reducible set with O(k) weighted intervals
 - $O(k^3)$ such new intervals
- the resulting interval graph \widehat{G} is weighted
 - \widehat{G} is a "special weighted interval graph with parameter κ "
 - where $\kappa = O(k^3)$

- partition $G \setminus D$ into:
 - a collection of "reducible" sets and
 - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
 - replace every reducible set with one weighted interval
 - O(n) such new intervals
- exhaustively apply a second data reduction rule
 - replace every weakly reducible set with O(k) weighted intervals
 - $O(k^3)$ such new intervals
- the resulting interval graph \widehat{G} is weighted
 - \widehat{G} is a "special weighted interval graph with parameter κ "
 - where $\kappa = O(k^3)$
- dynamic programming algorithm on \widehat{G}
 - compute in $O(\kappa^3 n) = O(k^9 n)$ time a max. weight path in \widehat{G}
 - $\bullet\,$ this corresponds to a longest path of $G\,$

Conclusions & Outlook

- "FPT inside P" offers an alternative way to deal with problems in P:
 - f(k) can possibly become polynomial
 - a nice interplay with fast approximation algorithms, providing suitable parameters
 - one can aim at reducing "slow" polynomial running times (e.g. $O(n^3)$ or higher)
 - but also $O(n^2)$ (or less) for more practical applications
- Longest Path on Interval Graphs:
 - Can we significantly improve the running time of $O(k^9n)$?

Conclusions & Outlook

- Exploit the rich toolbox of "classical" FPT algorithms:
 - data reductions
 - kernelization
 - . . .
- Lower bounds subject to established complexity conjectures
 - 3SUM
 - SETH
 - Boolean Matrix Multiplication
 - ...
- "FPT inside P" for big data / streaming

• Implementation / experiments of newly developed algorithms

Thank you for your attention!