# Polynomial Fixed-Parameter Algorithms: A Case Study for Longest Path on Interval Graphs

Archontia Giannopoulou<sup>1</sup> George B. Mertzios<sup>2</sup> Rolf Niedermeier<sup>3</sup>

<sup>1</sup>Institute of Informatics, University of Warsaw, Poland

<sup>2</sup>School of Engineering and Computing Sciences, Durham University, UK

<sup>3</sup>Institute of Software Engineering and Theoretical Computer Science, TU Berlin, Germany

Workshop on Graph Classes, Optimization, and Width Parameters (GROW)

October 2015

## Fixed-parameter algorithms

For many combinatorial problems the best known (exact) algorithms are too slow:

- exponential running times (for NP-hard problems)
- polynomials of high degree, e.g.  $O(n^3)$ ,  $O(n^4)$ , ... (for problems in P)

For many combinatorial problems the best known (exact) algorithms are too slow:

- exponential running times (for NP-hard problems)
- polynomials of high degree, e.g.  $O(n^3)$ ,  $O(n^4)$ , ... (for problems in P)

The successful "FPT approach" for exact computation:

- identify an appropriate parameter k that "causes" large running times
- design algorithms that separate the dependency of the running time from the input size n and the parameter k

More formally:

- a fixed-parameter algorithm solves a problem with input size *n* and parameter *k* in  $f(k) \cdot n^{O(1)}$  time
- $\Rightarrow$  whenever k is small, the algorithm is efficient for every input size n

## Fixed-parameter algorithms

- Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g. [Downey, Fellows, Parameterized Complexity, 1999]
   [Flum, Grohe, Parameterized Complexity Theory, 2006]
   [Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
   [Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
   [Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk<sup>2</sup>, Saurabh, Parameterized Algorithms, 2015]
- So far, FPT research focused on intractable (NP-hard) problems
  - where the function f(k) is unavoidably exponential (assuming  $P \neq NP$ )

## Fixed-parameter algorithms

- Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g. [Downey, Fellows, Parameterized Complexity, 1999]
   [Flum, Grohe, Parameterized Complexity Theory, 2006]
   [Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
   [Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
   [Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk<sup>2</sup>, Saurabh, Parameterized Algorithms, 2015]
- So far, FPT research focused on intractable (NP-hard) problems
   where the function f(k) is unavoidably exponential (assuming P≠NP)
- There is a growing awareness about the polynomial factors n<sup>O(1)</sup> (which were usually neglected), e.g.:
  - computing the treewidth: [Bodlaender, SIAM J. on Computing, 1996]
  - computing the crossing number: [Kawarabayashi, Reed, STOC, 2007]
  - problems from industrial applications: [van Bevern, PhD Thesis, 2014]
  - these works emphasize "linear time" in the title, instead of "FPT"

- Although polynomially solvable problems are theoretically tractable:
  - often the best known algorithms are not efficient in practice, e.g.
  - Linear Programming on arbitrary instances (interior point algorithms)
  - Matrix Multiplication (currently in  $O(n^{2.373})$  time)
  - Maximum Matching (in  $O(m\sqrt{n})$  time worst-case)

- Although polynomially solvable problems are theoretically tractable:
  - often the best known algorithms are not efficient in practice, e.g.
  - Linear Programming on arbitrary instances (interior point algorithms)
  - Matrix Multiplication (currently in  $O(n^{2.373})$  time)
  - Maximum Matching (in  $O(m\sqrt{n})$  time worst-case)
- In certain applications (e.g. when working with massive data sets):
  - even  $O(n^2)$ -time is considered inefficient
- Reducing the worst-case complexity:
  - significant improvements are often difficult (or impossible)

- Although polynomially solvable problems are theoretically tractable:
  - often the best known algorithms are not efficient in practice, e.g.
  - Linear Programming on arbitrary instances (interior point algorithms)
  - Matrix Multiplication (currently in  $O(n^{2.373})$  time)
  - Maximum Matching (in  $O(m\sqrt{n})$  time worst-case)
- In certain applications (e.g. when working with massive data sets):
  - even  $O(n^2)$ -time is considered inefficient
- Reducing the worst-case complexity:
  - significant improvements are often difficult (or impossible)
- Towards reducing polynomial factors  $n^{O(1)}$ :
  - the "FPT approach" can help refining the complexity of problems in P
- Appropriate parameterizations of a problem within P:
  - can reveal what makes it "far from being solvable in linear time"
  - in the same spirit as classical FPT algorithms (why is it "far from P")

Formally, given a problem  $\Pi$  with instance size *n*:

• for which there exists an  $O(n^c)$ -time algorithm

we aim at detecting an appropriate parameter k such that:

• there exists an  $f(k) \cdot n^{c'}$ -time algorithm where

c' < c and</li>
f(k) depends only on k

Formally, given a problem  $\Pi$  with instance size *n*:

• for which there exists an  $O(n^c)$ -time algorithm

we aim at detecting an appropriate parameter k such that:

• there exists an  $f(k) \cdot n^{c'}$ -time algorithm where

c' < c and</li>
f(k) depends only on k

### Definition (refinement of FPT)

For every polynomially bounded function p(n), the class FPT(p(n)) contains the problems solvable in  $f(k) \cdot p(n)$  time, where f(k) is an arbitrary (possibly exponential) function of k.

Formally, given a problem  $\Pi$  with instance size *n*:

• for which there exists an  $O(n^c)$ -time algorithm

we aim at detecting an appropriate parameter k such that:

• there exists an  $f(k) \cdot n^{c'}$ -time algorithm where

c' < c and</li>
f(k) depends only on k

### Definition (refinement of FPT)

For every polynomially bounded function p(n), the class FPT(p(n)) contains the problems solvable in  $f(k) \cdot p(n)$  time, where f(k) is an arbitrary (possibly exponential) function of k.

### For a problem within P:

• it is possible that f(k) can become polynomial on k

• in wide contrast to FPT algorithms for NP-hard problems!

5 / 24

Motivated by this:

### Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))(Polynomial Fixed-Parameter Tractable) contains the problems solvable in  $O(k^t \cdot p(n))$  time for some constant  $t \ge 1$ , i.e.  $f(k) = k^t$ .

Motivated by this:

### Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))(Polynomial Fixed-Parameter Tractable) contains the problems solvable in  $O(k^t \cdot p(n))$  time for some constant  $t \ge 1$ , i.e.  $f(k) = k^t$ .

For the case where p(n) = n, the class P-FPT(n) is called PL-FPT (*Polynomial-Linear Fixed-Parameter Tractable*).

Motivated by this:

### Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))(Polynomial Fixed-Parameter Tractable) contains the problems solvable in  $O(k^t \cdot p(n))$  time for some constant  $t \ge 1$ , i.e.  $f(k) = k^t$ .

For the case where p(n) = n, the class P-FPT(n) is called PL-FPT (*Polynomial-Linear Fixed-Parameter Tractable*).

This "FPT inside P" theme:

- interesting research direction
- too little explored so far
- few known results, scattered around in the literature

We propose three desirable algorithmic properties:

- the running time should depend polynomially on the parameter k $\Rightarrow$  the problem is in P-FPT(p(n)), for some polynomial p(n)
- When k is constant, the running time should be as close to linear as possible
  - $\Rightarrow$  the problem is in PL-FPT, or at least in P-FPT(p(n)) where  $p(n) \approx n$
- the parameter value (or a good approximation) should be computable efficiently (preferably in linear time) for arbitrary parameter values

We propose three desirable algorithmic properties:

- the running time should depend polynomially on the parameter k $\Rightarrow$  the problem is in P-FPT(p(n)), for some polynomial p(n)
- When k is constant, the running time should be as close to linear as possible
  - $\Rightarrow$  the problem is in PL-FPT, or at least in P-FPT(p(n)) where  $p(n) \approx n$
- the parameter value (or a good approximation) should be computable efficiently (preferably in linear time) for arbitrary parameter values

The "FPT inside P" framework should be systematically studied:

- exploiting the rich toolbox of parameterized algorithm design
  - e.g. data reductions, kernelization, ...
- having these three properties as a "compass"

# Related work

Shortest path problems

- Some polynomial algorithms can be "tuned" with respect to specific parameters:
  - classic Dijkstra's algorithm for shortest paths:  $O(m + n \log n)$  time
  - can be adapted to: O(m + n log k) time, where k is the number of distinct edge weights
     [Orlin, Madduri, Subramani, Williamson, J. of Discr. Alg., 2010]
     [Koutis, Miller, Peng, FOCS, 2011]
- In order to prove the efficiency of known heuristics for road networks:
  - the parameter highway dimension has been introduced [Abraham, Fiat, Goldberg, Werneck, *SODA*, 2010]
  - Dijkstra's algorithm is too slow in practice

Conclusion: Adopting a parameterized view may be of significant practical interest, even for quasi-linear algorithms

### Related work Maximum flow problems

- For graphs made planar by deleting *k* crossing edges:
  - maximum flow in  $O(k^3 \cdot n \log n)$  time [Hochstein, Weihe, SODA, 2007]
  - an embedding and the k crossing edges are given in the input
  - $\Rightarrow$  this violates Property 3 (no known good approximation of k)
- For graphs with bounded genus g and sum of capacities C:
  - maximum flow in O(g<sup>8</sup> · n log<sup>2</sup> n log<sup>2</sup> C) time
     [Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
  - an embedding and the genus g are given in the input
  - $\Rightarrow$  this violates Property 3 (no known good approximation of g)

### Related work Maximum flow problems

- For graphs made planar by deleting *k* crossing edges:
  - maximum flow in  $O(k^3 \cdot n \log n)$  time [Hochstein, Weihe, SODA, 2007]
  - an embedding and the k crossing edges are given in the input
  - $\Rightarrow$  this violates Property 3 (no known good approximation of k)
- For graphs with bounded genus g and sum of capacities C:
  - maximum flow in O(g<sup>8</sup> · n log<sup>2</sup> n log<sup>2</sup> C) time
     [Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
  - an embedding and the genus g are given in the input
  - $\Rightarrow$  this violates Property 3 (no known good approximation of g)
- Furthermore, when parameterized by the treewidth k:
  - multiterminal flow in linear time
    - [Hagerup, Katajainen, Nishimura, Ragde, J. Comp. & Syst. Sci, 1998]
  - Wiener index in near-linear time [Cabello, Knauer, Comp. Geom., 2009]
  - both with exponential dependency on k
  - $\Rightarrow$  this violates Property 1 (exponential f(k))

ヘロト 不得下 不足下 不足下

## Related work Linear Programming

- Due to a famous result of Megiddo [Megiddo, J. of the ACM, 1984]:
  - Linear Programming in linear time for fixed dimension d (# variables)
  - the multiplicative factor is  $f(d) = 2^{O(2^d)}$
  - $\Rightarrow$  this violates Property 1 (exponential f(k)), but is still in P-FPT(n)
  - $\Rightarrow$  no guarantee for practically efficient algorithms
    - can be seen as a precursor of "FPT inside P"

# Related work

#### Stringology

- String Matching with k Mismatches:
  - "find in a length-*n* string all occurrences of a length-*m* pattern with at most *k* errors"
  - in  $O(m^2 + nk^2)$  [Landau, Vishkin, FOCS, 1985]
  - in  $O(m \log k + nk^2)$  [Landau, Vishkin, J. Comp. & Syst. Sci, 1988]
  - in O(nk) [Landau, Vishkin, J. of Algorithms, 1989]
  - in  $O(n\sqrt{k \log k})$  [Amir, Lewenstein, Porat, J. of Algorithms, 2004]
- All these algorithms are linear in *n* 
  - as also in the extreme case k = 0 errors

# Related work

#### Stringology

- String Matching with k Mismatches:
  - "find in a length-*n* string all occurrences of a length-*m* pattern with at most *k* errors"
  - in  $O(m^2 + nk^2)$  [Landau, Vishkin, FOCS, 1985]
  - in  $O(m \log k + nk^2)$  [Landau, Vishkin, J. Comp. & Syst. Sci, 1988]
  - in O(nk) [Landau, Vishkin, J. of Algorithms, 1989]
  - in  $O(n\sqrt{k \log k})$  [Amir, Lewenstein, Porat, J. of Algorithms, 2004]
- All these algorithms are linear in *n* 
  - as also in the extreme case k = 0 errors
- The parameter k is directly defined by the problem itself (and given with the input)
- Our approach goes beyond that:
  - we try to detect the appropriate parameter that causes a high polynomial time complexity

- A "proof of concept" example: kernelization of Maximum Matching
  - parameter k =solution size
  - there exists a "Buss-like" kernel with  $O(k^2)$  vertices and edges
  - it can be computed in O(kn) time
  - $\Rightarrow$  total running time:  $O(kn + k^3)$
  - $\Rightarrow$  Maximum Matching is in PL-FPT for parameter k

# Kernelization of Maximum Matching

An illustrative example

A kernelization algorithm similar to Buss's for Vertex Cover:

• parameter k =solution size

### Reduction Rule 1

If deg(v) > 2(k-1) for some  $v \in V(G)$  then return  $(G \setminus \{v\}, k-1)$ .

Safeness (idea): if  $(G \setminus \{v\}, k-1)$  is a YES-instance, then adding v can always produce a matching of size  $\geq k$ 

in a matching of size k − 1 in G \ {v}, there is always
 "one more edge" in G

# Kernelization of Maximum Matching

An illustrative example

A kernelization algorithm similar to Buss's for Vertex Cover:

• parameter k =solution size

### Reduction Rule 1

If deg(v) > 2(k-1) for some  $v \in V(G)$  then return  $(G \setminus \{v\}, k-1)$ .

Safeness (idea): if  $(G \setminus \{v\}, k-1)$  is a YES-instance, then adding v can always produce a matching of size  $\geq k$ 

• in a matching of size k - 1 in  $G \setminus \{v\}$ , there is always "one more edge" in G

### Reduction Rule 2

If deg(v) = 0 for some  $v \in V(G)$  then return  $(G \setminus \{v\}, k)$ .

### Safeness: trivial

George Mertzios (Durham)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Iteratively apply Reduction Rule 1:

• in total O(kn) time

 $\Rightarrow 0 \leq \deg(v) \leq 2(k-1)$  for every (remaining) vertex v

Iteratively apply Reduction Rule 2:

- again in total O(kn) time
- $\Rightarrow 1 \leq \deg(v) \leq 2(k-1)$  for every (remaining) vertex v

Iteratively apply Reduction Rule 1:

• in total O(kn) time

 $\Rightarrow 0 \leq \deg(v) \leq 2(k-1)$  for every (remaining) vertex v

Iteratively apply Reduction Rule 2:

- again in total O(kn) time
- $\Rightarrow 1 \leq \deg(v) \leq 2(k-1)$  for every (remaining) vertex v

We can easily prove for the remaining graph G':

#### Lemma

$$|V(G')|, |E(G')| \le (2k-1) \cdot \operatorname{mm}(G').$$

where  $\mathbf{mm}(G') = \text{size of maximum matching in } G'$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Putting things together:

- compute the reduced graph G' (by Red. Rules 1 + 2)
  - in total O(kn) time
- suppose we remove *r* vertices by Reduction Rule 1
  - if  $r \ge k$  then stop and return YES
  - else k' = k r
- if G' has more than (k'-1)(2k'-1) vertices or edges
  - then stop and return YES
  - else apply the best known algorithm for Matching on G'

Putting things together:

- compute the reduced graph G' (by Red. Rules 1 + 2)
  - in total O(kn) time
- suppose we remove *r* vertices by Reduction Rule 1
  - if  $r \ge k$  then stop and return YES
  - else k' = k r
- if G' has more than (k'-1)(2k'-1) vertices or edges
  - then stop and return YES
  - else apply the best known algorithm for Matching on G'

The best known worst-case algorithm:

• in  $O(m\sqrt{n}) = O(k^3)$  time [Micali, Vazirani, FOCS, 1980]

 $\Rightarrow$  total running time:  $O(kn + k^3)$  time

- Main technical result: Longest Path on Interval Graphs
  - Longest Path is polynomially solvable in several "small" graph classes:
    - weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, *ISAAC*, 2004]

and only in a few "non-trivial" graph classes:

• interval graphs, cocomparability graphs, both in *O*(*n*<sup>4</sup>) time [loannidou, Mertzios, Nikolopoulos, *Algorithmica*, 2011] [Mertzios, Corneil, *SIAM J. on Discrete Mathematics*, 2012]

- Main technical result: Longest Path on Interval Graphs
  - Longest Path is polynomially solvable in several "small" graph classes:
    - weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, *ISAAC*, 2004]
    - and only in a few "non-trivial" graph classes:
      - interval graphs, cocomparability graphs, both in O(n<sup>4</sup>) time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]
  - On proper interval graphs:
    - trivially solvable in linear time
    - $\bullet \ \ \text{connected} \Rightarrow \text{Hamiltonian}$
  - $\Rightarrow$  parameter distance to triviality:
    - k = proper interval (vertex) deletion number
    - k can be 4-approximated in O(n+m) time

- Main technical result: Longest Path on Interval Graphs
  - Longest Path is polynomially solvable in several "small" graph classes:
    - weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, *ISAAC*, 2004]
    - and only in a few "non-trivial" graph classes:
      - interval graphs, cocomparability graphs, both in O(n<sup>4</sup>) time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]
  - On proper interval graphs:
    - trivially solvable in linear time
    - $\bullet \ \ \text{connected} \Rightarrow \text{Hamiltonian}$
  - $\Rightarrow$  parameter distance to triviality:
    - k = proper interval (vertex) deletion number
    - k can be 4-approximated in O(n+m) time

Our Algorithm: compute a longest path in  $O(k^9n)$  time

 $\Rightarrow$  Longest Path on Interval Graphs is in PL-FPT for parameter k

### Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.



### Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

### Definition

An interval graph G is a proper interval graph, if there exists an interval representation of G where no interval is properly included in another one.



### Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

### Definition

An interval graph G is a proper interval graph, if there exists an interval representation of G where no interval is properly included in another one.

### Theorem (Roberts, 1969)

An interval graph G is a proper interval graph  $\iff$  G does not include any claw  $K_{1,3}$  as induced subgraph.



## Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

# Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set *D*:

- Cai's algorithm (one forbidden subgraph): in O(4<sup>|D|</sup> poly(n)) time [Cai, Information Processing Letters, 1996]
- polynomial time exact computation: Open problem!

# Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set *D*:

- Cai's algorithm (one forbidden subgraph): in O(4<sup>|D|</sup> poly(n)) time [Cai, Information Processing Letters, 1996]
- polynomial time exact computation: Open problem!

We compute a 4-approximation of |D| in O(n+m) time:

- scan from left to right in the interval representation
- detect a claw  $K_{1,3}$
- remove all 4 vertices of the claw
- iterate

- Our proofs are based on the notion of normal paths in interval graphs. [loannidou, Mertzios, Nikolopoulos, *Algorithmica*, 2011] (a.k.a. straight paths: [Damaschke, *Discr. Math*, 1993])
- Main idea:
  - start with the leftmost vertex of the path
  - always continue with the leftmost unvisited neighbor of the current vertex

Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



э

Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



George Mertzios (Durham)

Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



20 / 24

Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



George Mertzios (Durham)

Example: path 
$$P = (u_2, u_1, u_6, u_5, u_4, u_3)$$



George Mertzios (Durham)

Given a proper interval deletion set *D* of *G*, where |D| = k: a partition  $G \setminus D$  into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets

- **1** partition  $G \setminus D$  into:
  - a collection of "reducible" sets and
  - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
  - replace every reducible set with one weighted interval
  - O(n) such new intervals

- partition  $G \setminus D$  into:
  - a collection of "reducible" sets and
  - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
  - replace every reducible set with one weighted interval
  - O(n) such new intervals
- exhaustively apply a second data reduction rule
  - replace every weakly reducible set with O(k) weighted intervals
  - $O(k^3)$  such new intervals

- partition  $G \setminus D$  into:
  - a collection of "reducible" sets and
  - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
  - replace every reducible set with one weighted interval
  - O(n) such new intervals
- exhaustively apply a second data reduction rule
  - replace every weakly reducible set with O(k) weighted intervals
  - $O(k^3)$  such new intervals
- the resulting interval graph  $\widehat{G}$  is weighted
  - $\widehat{G}$  is a "special weighted interval graph with parameter  $\kappa$ "
  - where  $\kappa = O(k^3)$

- partition  $G \setminus D$  into:
  - a collection of "reducible" sets and
  - a collection of "weakly reducible" sets
- exhaustively apply a data reduction rule
  - replace every reducible set with one weighted interval
  - O(n) such new intervals
- exhaustively apply a second data reduction rule
  - replace every weakly reducible set with O(k) weighted intervals
  - $O(k^3)$  such new intervals
- the resulting interval graph  $\widehat{G}$  is weighted
  - $\widehat{G}$  is a "special weighted interval graph with parameter  $\kappa$ "
  - where  $\kappa = O(k^3)$
- dynamic programming algorithm on  $\widehat{G}$ 
  - compute in  $O(\kappa^3 n) = O(k^9 n)$  time a max. weight path in  $\widehat{G}$
  - $\bullet\,$  this corresponds to a longest path of  $G\,$

# Conclusions & Outlook

- "FPT inside P" offers an alternative way to deal with problems in P:
  - f(k) can possibly become polynomial
  - a nice interplay with fast approximation algorithms, providing suitable parameters
  - one can aim at reducing "slow" polynomial running times (e.g.  $O(n^3)$  or higher)
  - but also  $O(n^2)$  (or less) for more practical applications
- Longest Path on Interval Graphs:
  - Can we significantly improve the running time of  $O(k^9n)$ ?

# Conclusions & Outlook

- Exploit the rich toolbox of "classical" FPT algorithms:
  - data reductions
  - kernelization
  - . . .
- Lower bounds subject to established complexity conjectures
  - 3SUM
  - SETH
  - Boolean Matrix Multiplication
  - ...
- "FPT inside P" for big data / streaming

• Implementation / experiments of newly developed algorithms

# Thank you for your attention!