Polynomial Fixed-Parameter Algorithms: A Case Study for Longest Path on Interval Graphs

Archontia Giannopoulou ${ }^{1}$ George B. Mertzios ${ }^{2}$ Rolf Niedermeier ${ }^{3}$
${ }^{1}$ Institute of Informatics, University of Warsaw, Poland
${ }^{2}$ School of Engineering and Computing Sciences, Durham University, UK
${ }^{3}$ Institute of Software Engineering and Theoretical Computer Science, TU Berlin, Germany

Workshop on Graph Classes, Optimization, and Width Parameters (GROW)

October 2015

Fixed-parameter algorithms

For many combinatorial problems the best known (exact) algorithms are too slow:

- exponential running times (for NP-hard problems)
- polynomials of high degree, e.g. $O\left(n^{3}\right), O\left(n^{4}\right), \ldots($ for problems in P)

Fixed-parameter algorithms

For many combinatorial problems the best known (exact) algorithms are too slow:

- exponential running times (for NP-hard problems)
- polynomials of high degree, e.g. $O\left(n^{3}\right), O\left(n^{4}\right), \ldots($ for problems in P)

The successful "FPT approach" for exact computation:

- identify an appropriate parameter k that "causes" large running times
- design algorithms that separate the dependency of the running time from the input size n and the parameter k

More formally:

- a fixed-parameter algorithm solves a problem with input size n and parameter k in $f(k) \cdot n^{O(1)}$ time
\Rightarrow whenever k is small, the algorithm is efficient for every input size n

Fixed-parameter algorithms

- Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g.
[Downey, Fellows, Parameterized Complexity, 1999]
[Flum, Grohe, Parameterized Complexity Theory, 2006]
[Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
[Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
[Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk ${ }^{2}$, Saurabh, Parameterized Algorithms, 2015]
- So far, FPT research focused on intractable (NP-hard) problems
- where the function $f(k)$ is unavoidably exponential (assuming $\mathrm{P} \neq \mathrm{NP}$)

Fixed-parameter algorithms

- Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g.
[Downey, Fellows, Parameterized Complexity, 1999]
[Flum, Grohe, Parameterized Complexity Theory, 2006]
[Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
[Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
[Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk², Saurabh, Parameterized Algorithms, 2015]
- So far, FPT research focused on intractable (NP-hard) problems
- where the function $f(k)$ is unavoidably exponential (assuming $\mathrm{P} \neq \mathrm{NP}$)
- There is a growing awareness about the polynomial factors $n^{O(1)}$ (which were usually neglected), e.g.:
- computing the treewidth: [Bodlaender, SIAM J. on Computing, 1996]
- computing the crossing number: [Kawarabayashi, Reed, STOC, 2007]
- problems from industrial applications: [van Bevern, PhD Thesis, 2014]
- these works emphasize "linear time" in the title, instead of "FPT"

"FPT inside P"

- Although polynomially solvable problems are theoretically tractable:
- often the best known algorithms are not efficient in practice, e.g.
- Linear Programming on arbitrary instances (interior point algorithms)
- Matrix Multiplication (currently in $O\left(n^{2.373}\right)$ time)
- Maximum Matching (in $O(m \sqrt{n})$ time worst-case)

"FPT inside P"

- Although polynomially solvable problems are theoretically tractable:
- often the best known algorithms are not efficient in practice, e.g.
- Linear Programming on arbitrary instances (interior point algorithms)
- Matrix Multiplication (currently in $O\left(n^{2.373}\right)$ time)
- Maximum Matching (in $O(m \sqrt{n})$ time worst-case)
- In certain applications (e.g. when working with massive data sets):
- even $O\left(n^{2}\right)$-time is considered inefficient
- Reducing the worst-case complexity:
- significant improvements are often difficult (or impossible)

"FPT inside P"

- Although polynomially solvable problems are theoretically tractable:
- often the best known algorithms are not efficient in practice, e.g.
- Linear Programming on arbitrary instances (interior point algorithms)
- Matrix Multiplication (currently in $O\left(n^{2.373}\right)$ time)
- Maximum Matching (in $O(m \sqrt{n})$ time worst-case)
- In certain applications (e.g. when working with massive data sets):
- even $O\left(n^{2}\right)$-time is considered inefficient
- Reducing the worst-case complexity:
- significant improvements are often difficult (or impossible)
- Towards reducing polynomial factors $n^{O(1)}$:
- the "FPT approach" can help refining the complexity of problems in P
- Appropriate parameterizations of a problem within P:
- can reveal what makes it "far from being solvable in linear time"
- in the same spirit as classical FPT algorithms (why is it "far from P")

"FPT inside P"

Formally, given a problem Π with instance size n :

- for which there exists an $O\left(n^{c}\right)$-time algorithm we aim at detecting an appropriate parameter k such that:
- there exists an $f(k) \cdot n^{c^{\prime}}$-time algorithm where
(1) $c^{\prime}<c$ and
(2) $f(k)$ depends only on k

"FPT inside P"

Formally, given a problem Π with instance size n :

- for which there exists an $O\left(n^{c}\right)$-time algorithm we aim at detecting an appropriate parameter k such that:
- there exists an $f(k) \cdot n^{c^{\prime}}$-time algorithm where
(1) $c^{\prime}<c$ and
(2) $f(k)$ depends only on k

Definition (refinement of FPT)

For every polynomially bounded function $p(n)$, the class $\operatorname{FPT}(p(n))$ contains the problems solvable in $f(k) \cdot p(n)$ time, where $f(k)$ is an arbitrary (possibly exponential) function of k.

"FPT inside P"

Formally, given a problem Π with instance size n :

- for which there exists an $O\left(n^{c}\right)$-time algorithm we aim at detecting an appropriate parameter k such that:
- there exists an $f(k) \cdot n^{c^{\prime}}$-time algorithm where
(1) $c^{\prime}<c$ and
(2) $f(k)$ depends only on k

Definition (refinement of FPT)

For every polynomially bounded function $p(n)$, the class $\operatorname{FPT}(p(n))$ contains the problems solvable in $f(k) \cdot p(n)$ time, where $f(k)$ is an arbitrary (possibly exponential) function of k.

For a problem within P :

- it is possible that $f(k)$ can become polynomial on k
- in wide contrast to FPT algorithms for NP-hard problems!

"FPT inside P"

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function $p(n)$, the class P-FPT $(p(n))$ (Polynomial Fixed-Parameter Tractable) contains the problems solvable in $O\left(k^{t} \cdot p(n)\right)$ time for some constant $t \geq 1$, i.e. $f(k)=k^{t}$.

"FPT inside P"

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function $p(n)$, the class $\operatorname{P-FPT}(p(n))$ (Polynomial Fixed-Parameter Tractable) contains the problems solvable in $O\left(k^{t} \cdot p(n)\right)$ time for some constant $t \geq 1$, i.e. $f(k)=k^{t}$.

For the case where $p(n)=n$, the class P-FPT (n) is called PL-FPT (Polynomial-Linear Fixed-Parameter Tractable).

"FPT inside P"

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function $p(n)$, the class $\operatorname{P-FPT}(p(n))$ (Polynomial Fixed-Parameter Tractable) contains the problems solvable in $O\left(k^{t} \cdot p(n)\right)$ time for some constant $t \geq 1$, i.e. $f(k)=k^{t}$.

For the case where $p(n)=n$, the class P-FPT (n) is called PL-FPT (Polynomial-Linear Fixed-Parameter Tractable).

This "FPT inside P" theme:

- interesting research direction
- too little explored so far
- few known results, scattered around in the literature

"FPT inside P"

We propose three desirable algorithmic properties:
(1) the running time should depend polynomially on the parameter k \Rightarrow the problem is in $\operatorname{P-FPT}(p(n))$, for some polynomial $p(n)$
(2) when k is constant, the running time should be as close to linear as possible
\Rightarrow the problem is in PL-FPT, or at least in $\operatorname{P-FPT}(p(n))$ where $p(n) \approx n$
(3) the parameter value (or a good approximation) should be computable efficiently (preferably in linear time) for arbitrary parameter values

"FPT inside P"

We propose three desirable algorithmic properties:
(1) the running time should depend polynomially on the parameter k \Rightarrow the problem is in $\operatorname{P-FPT}(p(n))$, for some polynomial $p(n)$
(2) when k is constant, the running time should be as close to linear as possible
\Rightarrow the problem is in PL-FPT, or at least in $\operatorname{P-FPT}(p(n))$ where $p(n) \approx n$
(3) the parameter value (or a good approximation) should be computable efficiently (preferably in linear time) for arbitrary parameter values

The "FPT inside P" framework should be systematically studied:

- exploiting the rich toolbox of parameterized algorithm design - e.g. data reductions, kernelization, ...
- having these three properties as a "compass"

Related work

Shortest path problems

- Some polynomial algorithms can be "tuned" with respect to specific parameters:
- classic Dijkstra's algorithm for shortest paths: $O(m+n \log n)$ time
- can be adapted to: $O(m+n \log k)$ time, where k is the number of distinct edge weights [Orlin, Madduri, Subramani, Williamson, J. of Discr. Alg., 2010] [Koutis, Miller, Peng, FOCS, 2011]
- In order to prove the efficiency of known heuristics for road networks:
- the parameter highway dimension has been introduced [Abraham, Fiat, Goldberg, Werneck, SODA, 2010]
- Dijkstra's algorithm is too slow in practice

Conclusion: Adopting a parameterized view may be of significant practical interest, even for quasi-linear algorithms

Related work

Maximum flow problems

- For graphs made planar by deleting k crossing edges:
- maximum flow in $O\left(k^{3} \cdot n \log n\right)$ time [Hochstein, Weihe, SODA, 2007]
- an embedding and the k crossing edges are given in the input
\Rightarrow this violates Property 3 (no known good approximation of k)
- For graphs with bounded genus g and sum of capacities C :
- maximum flow in $O\left(g^{8} \cdot n \log ^{2} n \log ^{2} C\right)$ time
[Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
- an embedding and the genus g are given in the input
\Rightarrow this violates Property 3 (no known good approximation of g)

Related work

Maximum flow problems

- For graphs made planar by deleting k crossing edges:
- maximum flow in $O\left(k^{3} \cdot n \log n\right)$ time [Hochstein, Weihe, SODA, 2007]
- an embedding and the k crossing edges are given in the input
\Rightarrow this violates Property 3 (no known good approximation of k)
- For graphs with bounded genus g and sum of capacities C :
- maximum flow in $O\left(g^{8} \cdot n \log ^{2} n \log ^{2} C\right)$ time
[Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
- an embedding and the genus g are given in the input
\Rightarrow this violates Property 3 (no known good approximation of g)
- Furthermore, when parameterized by the treewidth k :
- multiterminal flow in linear time
[Hagerup, Katajainen, Nishimura, Ragde, J. Comp. \& Syst. Sci, 1998]
- Wiener index in near-linear time [Cabello, Knauer, Comp. Geom., 2009]
- both with exponential dependency on k
\Rightarrow this violates Property 1 (exponential $f(k)$)

Related work

Linear Programming

- Due to a famous result of Megiddo [Megiddo, J. of the ACM, 1984]:
- Linear Programming in linear time for fixed dimension d (\# variables)
- the multiplicative factor is $f(d)=2^{O\left(2^{d}\right)}$
\Rightarrow this violates Property 1 (exponential $f(k)$), but is still in P-FPT (n)
\Rightarrow no guarantee for practically efficient algorithms
- can be seen as a precursor of "FPT inside P"

Related work

Stringology

- String Matching with k Mismatches:
- "find in a length- n string all occurrences of a length- m pattern with at most k errors"
- in $O\left(m^{2}+n k^{2}\right)$ [Landau, Vishkin, FOCS, 1985]
- in $O\left(m \log k+n k^{2}\right)$ [Landau, Vishkin, J. Comp. \& Syst. Sci, 1988]
- in $O(n k)$ [Landau, Vishkin, J. of Algorithms, 1989]
- in $O(n \sqrt{k \log k})$ [Amir, Lewenstein, Porat, J. of Algorithms, 2004]
- All these algorithms are linear in n
- as also in the extreme case $k=0$ errors

Related work

Stringology

- String Matching with k Mismatches:
- "find in a length- n string all occurrences of a length- m pattern with at most k errors"
- in $O\left(m^{2}+n k^{2}\right)$ [Landau, Vishkin, FOCS, 1985]
- in $O\left(m \log k+n k^{2}\right)$ [Landau, Vishkin, J. Comp. \& Syst. Sci, 1988]
- in $O(n k)$ [Landau, Vishkin, J. of Algorithms, 1989]
- in $O(n \sqrt{k \log k})$ [Amir, Lewenstein, Porat, J. of Algorithms, 2004]
- All these algorithms are linear in n
- as also in the extreme case $k=0$ errors
- The parameter k is directly defined by the problem itself (and given with the input)
- Our approach goes beyond that:
- we try to detect the appropriate parameter that causes a high polynomial time complexity

Our results

(1) A "proof of concept" example: kernelization of Maximum Matching

- parameter $k=$ solution size
- there exists a "Buss-like" kernel with $O\left(k^{2}\right)$ vertices and edges
- it can be computed in $O(k n)$ time
\Rightarrow total running time: $O\left(k n+k^{3}\right)$
\Rightarrow Maximum Matching is in PL-FPT for parameter k

Kernelization of Maximum Matching

An illustrative example
A kernelization algorithm similar to Buss's for Vertex Cover:

- parameter $k=$ solution size

```
Reduction Rule 1
If deg(v)>2(k-1) for some v\inV(G) then return ( }G\{v},k-1)
```

Safeness (idea): if $(G \backslash\{v\}, k-1)$ is a YES-instance, then adding v can always produce a matching of size $\geq k$

- in a matching of size $k-1$ in $G \backslash\{v\}$, there is always
"one more edge" in G

Kernelization of Maximum Matching

An illustrative example
A kernelization algorithm similar to Buss's for Vertex Cover:

- parameter $k=$ solution size

Reduction Rule 1

If $\operatorname{deg}(v)>2(k-1)$ for some $v \in V(G)$ then return $(G \backslash\{v\}, k-1)$.
Safeness (idea): if $(G \backslash\{v\}, k-1)$ is a YES-instance, then adding v can always produce a matching of size $\geq k$

- in a matching of size $k-1$ in $G \backslash\{v\}$, there is always
"one more edge" in G

Reduction Rule 2

If $\operatorname{deg}(v)=0$ for some $v \in V(G)$ then return $(G \backslash\{v\}, k)$.
Safeness: trivial

Kernelization of Maximum Matching

An illustrative example

Iteratively apply Reduction Rule 1:

- in total $O(k n)$ time
$\Rightarrow 0 \leq \operatorname{deg}(v) \leq 2(k-1)$ for every (remaining) vertex v
Iteratively apply Reduction Rule 2 :
- again in total $O(k n)$ time
$\Rightarrow 1 \leq \operatorname{deg}(v) \leq 2(k-1)$ for every (remaining) vertex v

Kernelization of Maximum Matching

An illustrative example

Iteratively apply Reduction Rule 1:

- in total $O(k n)$ time
$\Rightarrow 0 \leq \operatorname{deg}(v) \leq 2(k-1)$ for every (remaining) vertex v
Iteratively apply Reduction Rule 2:
- again in total $O(k n)$ time
$\Rightarrow 1 \leq \operatorname{deg}(v) \leq 2(k-1)$ for every (remaining) vertex v
We can easily prove for the remaining graph G^{\prime} :

Lemma

$\left|V\left(G^{\prime}\right)\right|,\left|E\left(G^{\prime}\right)\right| \leq(2 k-1) \cdot \mathbf{m m}\left(G^{\prime}\right)$.
where $\mathbf{m m}\left(G^{\prime}\right)=$ size of maximum matching in G^{\prime}

Kernelization of Maximum Matching

An illustrative example

Putting things together:

- compute the reduced graph G^{\prime} (by Red. Rules $1+2$)
- in total $O(\mathrm{kn})$ time
- suppose we remove r vertices by Reduction Rule 1
- if $r \geq k$ then stop and return YES
- else $k^{\prime}=k-r$
- if G^{\prime} has more than $\left(k^{\prime}-1\right)\left(2 k^{\prime}-1\right)$ vertices or edges
- then stop and return YES
- else apply the best known algorithm for Matching on G^{\prime}

Kernelization of Maximum Matching

An illustrative example

Putting things together:

- compute the reduced graph G^{\prime} (by Red. Rules $1+2$)
- in total $O(k n)$ time
- suppose we remove r vertices by Reduction Rule 1
- if $r \geq k$ then stop and return YES
- else $k^{\prime}=k-r$
- if G^{\prime} has more than $\left(k^{\prime}-1\right)\left(2 k^{\prime}-1\right)$ vertices or edges
- then stop and return YES
- else apply the best known algorithm for Matching on G^{\prime}

The best known worst-case algorithm:

- in $O(m \sqrt{n})=O\left(k^{3}\right)$ time [Micali, Vazirani, FOCS, 1980]
\Rightarrow total running time: $O\left(k n+k^{3}\right)$ time

Our results

(2) Main technical result: Longest Path on Interval Graphs

- Longest Path is polynomially solvable in several "small" graph classes:
- weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, ISAAC, 2004] and only in a few "non-trivial" graph classes:
- interval graphs, cocomparability graphs, both in $O\left(n^{4}\right)$ time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]

Our results

(2) Main technical result: Longest Path on Interval Graphs

- Longest Path is polynomially solvable in several "small" graph classes:
- weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, ISAAC, 2004]
and only in a few "non-trivial" graph classes:
- interval graphs, cocomparability graphs, both in $O\left(n^{4}\right)$ time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]
- On proper interval graphs:
- trivially solvable in linear time
- connected \Rightarrow Hamiltonian
\Rightarrow parameter distance to triviality:
- $k=$ proper interval (vertex) deletion number
- k can be 4 -approximated in $O(n+m)$ time

Our results

(2) Main technical result: Longest Path on Interval Graphs

- Longest Path is polynomially solvable in several "small" graph classes:
- weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs [Uehara, Uno, ISAAC, 2004]
and only in a few "non-trivial" graph classes:
- interval graphs, cocomparability graphs, both in $O\left(n^{4}\right)$ time [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] [Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]
- On proper interval graphs:
- trivially solvable in linear time
- connected \Rightarrow Hamiltonian
\Rightarrow parameter distance to triviality:
- $k=$ proper interval (vertex) deletion number
- k can be 4 -approximated in $O(n+m)$ time

Our Algorithm: compute a longest path in $O\left(k^{9} n\right)$ time
\Rightarrow Longest Path on Interval Graphs is in PL-FPT for parameter k

Longest Path on Interval Graphs

Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

Longest Path on Interval Graphs

Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

Definition

An interval graph G is a proper interval graph, if there exists an interval representation of G where no interval is properly included in another one.

Longest Path on Interval Graphs

Definition

A graph G is called an interval graph, if G is the intersection graph of a set of intervals on the real line.

Definition

An interval graph G is a proper interval graph, if there exists an interval representation of G where no interval is properly included in another one.

Theorem (Roberts, 1969)

An interval graph G is a proper interval graph \Longleftrightarrow
G does not include any claw $K_{1,3}$ as induced subgraph.

Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set D :

- Cai's algorithm (one forbidden subgraph): in $O\left(4^{|D|}\right.$ poly $\left.(n)\right)$ time [Cai, Information Processing Letters, 1996]
- polynomial time exact computation: Open problem!

Proper interval deletion set

We take as input:

- an interval representation of G
- G has n vertices and m edges
- the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set D :

- Cai's algorithm (one forbidden subgraph): in $O\left(4^{|D|}\right.$ poly $\left.(n)\right)$ time [Cai, Information Processing Letters, 1996]
- polynomial time exact computation: Open problem!

We compute a 4-approximation of $|D|$ in $O(n+m)$ time:

- scan from left to right in the interval representation
- detect a claw $K_{1,3}$
- remove all 4 vertices of the claw
- iterate

Longest Path on Interval Graphs

Normal paths in interval graphs

- Our proofs are based on the notion of normal paths in interval graphs. [loannidou, Mertzios, Nikolopoulos, Algorithmica, 2011] (a.k.a. straight paths: [Damaschke, Discr. Math, 1993])
- Main idea:
- start with the leftmost vertex of the path
- always continue with the leftmost unvisited neighbor of the current vertex

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=(, \quad, \quad, \quad, \quad)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=\left(u_{1}, \quad, \quad, \quad,\right)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=\left(u_{1}, u_{2}, \quad, \quad, \quad\right)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=\left(u_{1}, u_{2}, u_{4}, \quad, \quad\right)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=\left(u_{1}, u_{2}, u_{4}, u_{3}, \quad, \quad\right)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=\left(u_{1}, u_{2}, u_{4}, u_{3}, u_{6}, \quad\right)$

Longest Path on Interval Graphs

Normal paths in interval graphs

Example: path $P=\left(u_{2}, u_{1}, u_{6}, u_{5}, u_{4}, u_{3}\right)$

Normal path: $P^{\prime}=\left(u_{1}, u_{2}, u_{4}, u_{3}, u_{6}, u_{5}\right)$

Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G, where $|D|=k$:
(1) partition $G \backslash D$ into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets

Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G, where $|D|=k$:
(1) partition $G \backslash D$ into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets
(2) exhaustively apply a data reduction rule
- replace every reducible set with one weighted interval
- $O(n)$ such new intervals

Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G, where $|D|=k$:
(1) partition $G \backslash D$ into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets
(2) exhaustively apply a data reduction rule
- replace every reducible set with one weighted interval
- $O(n)$ such new intervals
(3) exhaustively apply a second data reduction rule
- replace every weakly reducible set with $O(k)$ weighted intervals
- $O\left(k^{3}\right)$ such new intervals

Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G, where $|D|=k$:
(1) partition $G \backslash D$ into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets
(2) exhaustively apply a data reduction rule
- replace every reducible set with one weighted interval
- $O(n)$ such new intervals
(3) exhaustively apply a second data reduction rule
- replace every weakly reducible set with $O(k)$ weighted intervals
- $O\left(k^{3}\right)$ such new intervals
(9) the resulting interval graph \widehat{G} is weighted
- \widehat{G} is a "special weighted interval graph with parameter κ "
- where $\kappa=O\left(k^{3}\right)$

Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G, where $|D|=k$:
(1) partition $G \backslash D$ into:

- a collection of "reducible" sets and
- a collection of "weakly reducible" sets
(2) exhaustively apply a data reduction rule
- replace every reducible set with one weighted interval
- $O(n)$ such new intervals
(3) exhaustively apply a second data reduction rule
- replace every weakly reducible set with $O(k)$ weighted intervals
- $O\left(k^{3}\right)$ such new intervals
(9) the resulting interval graph \widehat{G} is weighted
- \widehat{G} is a "special weighted interval graph with parameter κ "
- where $\kappa=O\left(k^{3}\right)$
(5) dynamic programming algorithm on \widehat{G}
- compute in $O\left(\kappa^{3} n\right)=O\left(k^{9} n\right)$ time a max. weight path in \widehat{G}
- this corresponds to a longest path of G

Conclusions \& Outlook

- "FPT inside P" offers an alternative way to deal with problems in P:
- $f(k)$ can possibly become polynomial
- a nice interplay with fast approximation algorithms, providing suitable parameters
- one can aim at reducing "slow" polynomial running times (e.g. $O\left(n^{3}\right)$ or higher)
- but also $O\left(n^{2}\right)$ (or less) for more practical applications
- Longest Path on Interval Graphs:
- Can we significantly improve the running time of $O\left(k^{9} n\right)$?

Conclusions \& Outlook

- Exploit the rich toolbox of "classical" FPT algorithms:
- data reductions
- kernelization
- ...
- Lower bounds subject to established complexity conjectures
- 3SUM
- SETH
- Boolean Matrix Multiplication
- ...
- "FPT inside P" for big data / streaming
- Implementation / experiments of newly developed algorithms

Thank you for your attention!

