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Fixed-parameter algorithms

For many combinatorial problems the best known (exact) algorithms
are too slow:

exponential running times (for NP-hard problems)

polynomials of high degree, e.g. O(n3), O(n4), . . . (for problems in P)
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Fixed-parameter algorithms

For many combinatorial problems the best known (exact) algorithms
are too slow:

exponential running times (for NP-hard problems)

polynomials of high degree, e.g. O(n3), O(n4), . . . (for problems in P)

The successful “FPT approach” for exact computation:

identify an appropriate parameter k that “causes” large running times

design algorithms that separate the dependency of the running time
from the input size n and the parameter k

More formally:

a fixed-parameter algorithm solves a problem with input size n and
parameter k in f (k) · nO(1) time

⇒ whenever k is small, the algorithm is efficient for every input size n
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Fixed-parameter algorithms

Fixed-Parameter Tractability (FPT) is a flourishing field, see e.g.
[Downey, Fellows, Parameterized Complexity, 1999]
[Flum, Grohe, Parameterized Complexity Theory, 2006]
[Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
[Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
[Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk2, Saurabh,

Parameterized Algorithms, 2015]

So far, FPT research focused on intractable (NP-hard) problems

where the function f (k) is unavoidably exponential (assuming P 6=NP)
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[Downey, Fellows, Parameterized Complexity, 1999]
[Flum, Grohe, Parameterized Complexity Theory, 2006]
[Niedermeier, Invitation to Fixed-Parameter Algorithms, 2006]
[Downey, Fellows, Fundamentals of Parameterized Complexity, 2013]
[Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk2, Saurabh,

Parameterized Algorithms, 2015]

So far, FPT research focused on intractable (NP-hard) problems

where the function f (k) is unavoidably exponential (assuming P 6=NP)

There is a growing awareness about the polynomial factors nO(1)

(which were usually neglected), e.g.:

computing the treewidth: [Bodlaender, SIAM J. on Computing, 1996]
computing the crossing number: [Kawarabayashi, Reed, STOC, 2007]
problems from industrial applications: [van Bevern, PhD Thesis, 2014]
these works emphasize “linear time” in the title, instead of “FPT”
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“FPT inside P”

Although polynomially solvable problems are theoretically tractable:

often the best known algorithms are not efficient in practice, e.g.
Linear Programming on arbitrary instances (interior point algorithms)
Matrix Multiplication (currently in O(n2.373) time)
Maximum Matching (in O(m

√
n) time worst-case)

In certain applications (e.g. when working with massive data sets):

even O(n2)-time is considered inefficient

Reducing the worst-case complexity:

significant improvements are often difficult (or impossible)

Towards reducing polynomial factors nO(1):

the “FPT approach” can help refining the complexity of problems in P

Appropriate parameterizations of a problem within P:

can reveal what makes it “far from being solvable in linear time”
in the same spirit as classical FPT algorithms (why is it “far from P”)
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“FPT inside P”

Formally, given a problem Π with instance size n:

for which there exists an O(nc)-time algorithm

we aim at detecting an appropriate parameter k such that:

there exists an f (k) · nc ′-time algorithm where
1 c ′ < c and
2 f (k) depends only on k

Definition (refinement of FPT)

For every polynomially bounded function p(n), the class FPT(p(n))
contains the problems solvable in f (k) · p(n) time,
where f (k) is an arbitrary (possibly exponential) function of k .

For a problem within P:

it is possible that f (k) can become polynomial on k

in wide contrast to FPT algorithms for NP-hard problems!
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“FPT inside P”

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))
(Polynomial Fixed-Parameter Tractable) contains the problems solvable in
O(kt · p(n)) time for some constant t ≥ 1, i.e. f (k) = kt .

For the case where p(n) = n, the class P-FPT(n) is called PL-FPT
(Polynomial-Linear Fixed-Parameter Tractable).
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“FPT inside P”

Motivated by this:

Definition (refinement of P)

For every polynomially bounded function p(n), the class P-FPT(p(n))
(Polynomial Fixed-Parameter Tractable) contains the problems solvable in
O(kt · p(n)) time for some constant t ≥ 1, i.e. f (k) = kt .

For the case where p(n) = n, the class P-FPT(n) is called PL-FPT
(Polynomial-Linear Fixed-Parameter Tractable).

This “FPT inside P” theme:

interesting research direction

too little explored so far

few known results, scattered around in the literature
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“FPT inside P”

We propose three desirable algorithmic properties:

1 the running time should depend polynomially on the parameter k

⇒ the problem is in P-FPT(p(n)), for some polynomial p(n)

2 when k is constant, the running time should be as close to linear as
possible

⇒ the problem is in PL-FPT, or at least in P-FPT(p(n)) where p(n) ≈ n

3 the parameter value (or a good approximation) should be computable
efficiently (preferably in linear time) for arbitrary parameter values
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We propose three desirable algorithmic properties:

1 the running time should depend polynomially on the parameter k

⇒ the problem is in P-FPT(p(n)), for some polynomial p(n)

2 when k is constant, the running time should be as close to linear as
possible

⇒ the problem is in PL-FPT, or at least in P-FPT(p(n)) where p(n) ≈ n

3 the parameter value (or a good approximation) should be computable
efficiently (preferably in linear time) for arbitrary parameter values

The “FPT inside P” framework should be systematically studied:

exploiting the rich toolbox of parameterized algorithm design

e.g. data reductions, kernelization, . . .

having these three properties as a “compass”
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Related work
Shortest path problems

Some polynomial algorithms can be “tuned” with respect to specific
parameters:

classic Dijkstra’s algorithm for shortest paths: O(m+ n log n) time
can be adapted to: O(m+ n log k) time, where k is the number
of distinct edge weights
[Orlin, Madduri, Subramani, Williamson, J. of Discr. Alg., 2010]
[Koutis, Miller, Peng, FOCS, 2011]

In order to prove the efficiency of known heuristics for road networks:

the parameter highway dimension has been introduced
[Abraham, Fiat, Goldberg, Werneck, SODA, 2010]
Dijkstra’s algorithm is too slow in practice

Conclusion: Adopting a parameterized view may be of significant
practical interest, even for quasi-linear algorithms
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Related work
Maximum flow problems

For graphs made planar by deleting k crossing edges:

maximum flow in O(k3 · n log n) time [Hochstein, Weihe, SODA, 2007]
an embedding and the k crossing edges are given in the input

⇒ this violates Property 3 (no known good approximation of k)

For graphs with bounded genus g and sum of capacities C :

maximum flow in O(g8 · n log2 n log2C ) time
[Chambers, Erickson, Nayyeri, SIAM J. on Computing, 2012]
an embedding and the genus g are given in the input

⇒ this violates Property 3 (no known good approximation of g)

Furthermore, when parameterized by the treewidth k :

multiterminal flow in linear time
[Hagerup, Katajainen, Nishimura, Ragde, J. Comp. & Syst. Sci, 1998]
Wiener index in near-linear time [Cabello, Knauer, Comp. Geom., 2009]
both with exponential dependency on k

⇒ this violates Property 1 (exponential f (k))
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Related work
Linear Programming

Due to a famous result of Megiddo [Megiddo, J. of the ACM, 1984]:

Linear Programming in linear time for fixed dimension d (# variables)

the multiplicative factor is f (d) = 2O(2d )

⇒ this violates Property 1 (exponential f (k)), but is still in P-FPT(n)
⇒ no guarantee for practically efficient algorithms

can be seen as a precursor of “FPT inside P”
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Related work
Stringology

String Matching with k Mismatches:

“find in a length-n string all occurrences of a length-m pattern
with at most k errors”
in O(m2 + nk2) [Landau, Vishkin, FOCS, 1985]
in O(m log k + nk2) [Landau, Vishkin, J. Comp. & Syst. Sci, 1988]
in O(nk) [Landau, Vishkin, J. of Algorithms, 1989]
in O(n

√
k log k) [Amir, Lewenstein, Porat, J. of Algorithms, 2004]

All these algorithms are linear in n

as also in the extreme case k = 0 errors

The parameter k is directly defined by the problem itself
(and given with the input)

Our approach goes beyond that:

we try to detect the appropriate parameter
that causes a high polynomial time complexity

George Mertzios (Durham) Polynomial Fixed-Parameter Algorithms GROW 2015, Aussois, France 11 / 24



Related work
Stringology

String Matching with k Mismatches:

“find in a length-n string all occurrences of a length-m pattern
with at most k errors”
in O(m2 + nk2) [Landau, Vishkin, FOCS, 1985]
in O(m log k + nk2) [Landau, Vishkin, J. Comp. & Syst. Sci, 1988]
in O(nk) [Landau, Vishkin, J. of Algorithms, 1989]
in O(n

√
k log k) [Amir, Lewenstein, Porat, J. of Algorithms, 2004]

All these algorithms are linear in n

as also in the extreme case k = 0 errors

The parameter k is directly defined by the problem itself
(and given with the input)

Our approach goes beyond that:

we try to detect the appropriate parameter
that causes a high polynomial time complexity

George Mertzios (Durham) Polynomial Fixed-Parameter Algorithms GROW 2015, Aussois, France 11 / 24



Our results

1 A “proof of concept” example: kernelization of Maximum Matching

parameter k = solution size
there exists a “Buss-like” kernel with O(k2) vertices and edges
it can be computed in O(kn) time

⇒ total running time: O(kn+ k3)

⇒ Maximum Matching is in PL-FPT for parameter k
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Kernelization of Maximum Matching
An illustrative example

A kernelization algorithm similar to Buss’s for Vertex Cover:

parameter k = solution size

Reduction Rule 1

If deg(v) > 2(k − 1) for some v ∈ V (G ) then return (G \ {v}, k − 1).

Safeness (idea): if (G \ {v}, k − 1) is a YES-instance, then adding v can
always produce a matching of size ≥ k

in a matching of size k − 1 in G \ {v}, there is always
“one more edge” in G
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If deg(v) > 2(k − 1) for some v ∈ V (G ) then return (G \ {v}, k − 1).

Safeness (idea): if (G \ {v}, k − 1) is a YES-instance, then adding v can
always produce a matching of size ≥ k

in a matching of size k − 1 in G \ {v}, there is always
“one more edge” in G

Reduction Rule 2

If deg(v) = 0 for some v ∈ V (G ) then return (G \ {v}, k).

Safeness: trivial
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Kernelization of Maximum Matching
An illustrative example

Iteratively apply Reduction Rule 1:

in total O(kn) time

⇒ 0 ≤ deg(v) ≤ 2(k − 1) for every (remaining) vertex v

Iteratively apply Reduction Rule 2:

again in total O(kn) time

⇒ 1 ≤ deg(v) ≤ 2(k − 1) for every (remaining) vertex v
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Kernelization of Maximum Matching
An illustrative example

Iteratively apply Reduction Rule 1:

in total O(kn) time

⇒ 0 ≤ deg(v) ≤ 2(k − 1) for every (remaining) vertex v

Iteratively apply Reduction Rule 2:

again in total O(kn) time

⇒ 1 ≤ deg(v) ≤ 2(k − 1) for every (remaining) vertex v

We can easily prove for the remaining graph G ′:

Lemma

|V (G ′)|, |E (G ′)| ≤ (2k − 1) ·mm(G ′).

where mm(G ′) = size of maximum matching in G ′
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Kernelization of Maximum Matching
An illustrative example

Putting things together:

compute the reduced graph G ′ (by Red. Rules 1 + 2)

in total O(kn) time

suppose we remove r vertices by Reduction Rule 1

if r ≥ k then stop and return YES

else k ′ = k − r

if G ′ has more than (k ′ − 1)(2k ′ − 1) vertices or edges

then stop and return YES

else apply the best known algorithm for Matching on G ′

The best known worst-case algorithm:

in O(m
√
n) = O(k3) time [Micali, Vazirani, FOCS, 1980]

⇒ total running time: O(kn+ k3) time
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Our results

2 Main technical result: Longest Path on Interval Graphs

Longest Path is polynomially solvable in several “small” graph
classes:

weighted trees, block graphs, ptolemaic graphs, cacti, threshold graphs
[Uehara, Uno, ISAAC, 2004]

and only in a few “non-trivial” graph classes:
interval graphs, cocomparability graphs, both in O(n4) time
[Ioannidou, Mertzios, Nikolopoulos, Algorithmica, 2011]
[Mertzios, Corneil, SIAM J. on Discrete Mathematics, 2012]

On proper interval graphs:
trivially solvable in linear time
connected ⇒ Hamiltonian

⇒ parameter distance to triviality:
k = proper interval (vertex) deletion number
k can be 4-approximated in O(n+m) time

Our Algorithm: compute a longest path in O(k9n) time

⇒ Longest Path on Interval Graphs is in PL-FPT for parameter k
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Longest Path on Interval Graphs

Definition

A graph G is called an interval graph, if G is the intersection graph of a
set of intervals on the real line.

Definition

An interval graph G is a proper interval graph, if there exists an interval
representation of G where no interval is properly included in another one.

a

b c d
e

a

b

c d

e
⇔
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Longest Path on Interval Graphs

Definition

A graph G is called an interval graph, if G is the intersection graph of a
set of intervals on the real line.

Definition

An interval graph G is a proper interval graph, if there exists an interval
representation of G where no interval is properly included in another one.

Theorem (Roberts, 1969)

An interval graph G is a proper interval graph ⇐⇒
G does not include any claw K1,3 as induced subgraph.

u

v1 v2 v3

K1,3 :

rulu

lv2lv1 lv3rv1 rv2 rv3

Iu

Iv2Iv1 Iv3
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Proper interval deletion set

We take as input:

an interval representation of G

G has n vertices and m edges

the endpoints of the intervals are sorted increasingly

Computation of a minimum proper interval deletion set D:

Cai’s algorithm (one forbidden subgraph): in O(4|D|poly(n)) time
[Cai, Information Processing Letters, 1996]

polynomial time exact computation: Open problem!

We compute a 4-approximation of |D | in O(n+m) time:

scan from left to right in the interval representation

detect a claw K1,3

remove all 4 vertices of the claw

iterate
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Longest Path on Interval Graphs
Normal paths in interval graphs

Our proofs are based on the notion of normal paths in interval graphs.
[Ioannidou, Mertzios, Nikolopoulos, Algorithmica, 2011]
(a.k.a. straight paths: [Damaschke, Discr. Math, 1993])

Main idea:

start with the leftmost vertex of the path

always continue with the leftmost unvisited neighbor
of the current vertex

George Mertzios (Durham) Polynomial Fixed-Parameter Algorithms GROW 2015, Aussois, France 19 / 24



Longest Path on Interval Graphs
Normal paths in interval graphs

Example: path P = (u2, u1, u6, u5, u4, u3)

u2 u3

u4

u5

I1

I2 I3

I4

u1

u6

I6

I5P :
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Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G , where |D | = k :
1 partition G \D into:

a collection of “reducible” sets and
a collection of “weakly reducible” sets

2 exhaustively apply a data reduction rule
replace every reducible set with one weighted interval
O(n) such new intervals

3 exhaustively apply a second data reduction rule
replace every weakly reducible set with O(k) weighted intervals
O(k3) such new intervals

4 the resulting interval graph Ĝ is weighted
Ĝ is a “special weighted interval graph with parameter κ”
where κ = O(k3)

5 dynamic programming algorithm on Ĝ
compute in O(κ3n) = O(k9n) time a max. weight path in Ĝ
this corresponds to a longest path of G
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this corresponds to a longest path of G

George Mertzios (Durham) Polynomial Fixed-Parameter Algorithms GROW 2015, Aussois, France 21 / 24



Longest Path on Interval Graphs: Algorithm sketch

Given a proper interval deletion set D of G , where |D | = k :
1 partition G \D into:

a collection of “reducible” sets and
a collection of “weakly reducible” sets

2 exhaustively apply a data reduction rule
replace every reducible set with one weighted interval
O(n) such new intervals

3 exhaustively apply a second data reduction rule
replace every weakly reducible set with O(k) weighted intervals
O(k3) such new intervals

4 the resulting interval graph Ĝ is weighted
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Conclusions & Outlook

“FPT inside P” offers an alternative way to deal with problems in P:

f (k) can possibly become polynomial

a nice interplay with fast approximation algorithms,
providing suitable parameters

one can aim at reducing “slow” polynomial running times
(e.g. O(n3) or higher)

but also O(n2) (or less) for more practical applications

Longest Path on Interval Graphs:

Can we significantly improve the running time of O(k9n)?
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Conclusions & Outlook

Exploit the rich toolbox of “classical” FPT algorithms:

data reductions

kernelization

. . .

Lower bounds subject to established complexity conjectures

3SUM

SETH

Boolean Matrix Multiplication

. . .

“FPT inside P” for big data / streaming

Implementation / experiments of newly developed algorithms
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Thank you for your attention!
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