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H-expansion (H-minor model) :

H G

G has an H-expansion Ø H is isomorphic to a minor of G.

A graph class C satisfies the Erdős-Pósa property if for every graph G and an
integer k, there exists a function fpk, Cq such that either

G contains k pairwise vertex-disjoint subgraphs of C, or

there is a vertex set of size at most fpk, Cq that meets all subgraphs in C.
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Question : For every graph H, does the class of H-expansions have the Erdős-Pósa
property?

NO.

Robertson, Seymour and Thomas (94)

The class of all H-expansions satisfies the Erdős-Pósa property if and only if H is planar.

We would like to think about H-expansions containing some vertices of prescribed sets.

Z1

Z2 Z3
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H-expansions intersecting certain sets

Let H be one vertex graph. Let G be a graph, S, T be disjoint vertex subsets of
G. Then H-expansions intersecting both S and T satisfy the Erdős-Pósa property.

Proof : Suppose there are no k pairwise vertex-disjoint H-expansions intersecting
both S and T .
Ñ There are no k pairwise vertex-disjoint paths from S to T .
Ñ By Menger’s theorem, there is a vertex set A of size at most k ´ 1 that meets
all paths from S to T .
Ñ A meets all H-expansions intersecting both S and T .

Let H be one vertex graph. Let G be a graph, S1, . . . , Sm be disjoint vertex
subsets of G. Then H-expansions intersecting at least two sets of S1, . . . , Sm

satisfy the Erdős-Pósa property.

Obtained from Mader’s S-path Theorem (78).
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Let G be a graph, and Z1, . . . , Zm be (not necessarily disjoint) vertex subsets of G,
Z :“ tZ1, . . . , Zmu.

An H-expansion F is called pZ, `q-intersecting if there are ` distinct sets Z of Z where
V pF q X Z ‰ H.

Question : Does the class of pZ, `q-intersecting H-expansions have the Erdős-Pósa
property?

NO in general.

Y1

Y2

Y3

H

Z1 Z3

Z2

G

There are no two pairwise vertex-disjoint pZ, 3q-intersecting H-expansions.
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Theorem (Marx, K 15)

The class of pZ, `q-intersecting H-expansions has the Erdős-Pósa property if and only if

H is planar and

the number of components of H is at least `´ 1.

Our bound on the covering set significantly depends on the function in Grid Minor
Theorem. By Chekuri and Chuzhoy (14), we have a polynomial bound in k, `, |V pHq|,
and the bound does not depend on the number of given prescribed sets in Z.

Ingredients :

(1) slightly improvement of Rooted Grid Theorem (Marx, Seymour, Wollan 13).

(2) We prove the Erdős-Pósa property for pure pZ, `q-intersecting H-expansions.

(3) Theorem by Burger (04) for bounded tree-width case.

(4) Reducing the original problem into pure expansions.

- We will show by induction on `. We assume that H is planar. For easier discussion, we
assume that H consists of at least ` components.
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1. Rooted Grid Expansion
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Let Z1, . . . , Zm be (not necessarily disjoint) vertex subsets of G, Z :“ tZ1, . . . , Zmu.

A vertex set W Ď V pGq is said to admit a pZ, kq-partition if there is a partition
L1, . . . , Lx of W and an injection γ : t1, . . . , xu Ñ t1, . . . ,mu such that

|Li| ď k and Li Ď Zγpiq.

For a vertex set Y of G, a set of pairwise vertex-disjoint n paths from
Ť

ZPZ Z to Y is
called a pZ, Y, kq-linkage of order n if the end vertices in

Ť

ZPZ Z admit a
pZ, kq-partition.

Z1

Z2

Z3

Z4

Y

k “ 2
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Lemma (Variant of Menger)

For k, ` and Y Ď V pGq, either G contains

a separation pA,Bq in G of order less than k` such that Y Ď V pBq and BzV pAq
contains at most `´ 1 sets of Z, or

a pZ, Y, kq-linkage of order k`.

Proof Idea : Adding a set of k vertices that are completely adjacent to Zi for each i.

A pZ, k, `q-rooted grid expansion of order g is a Gg-expansion satisfying the property
that for each 1 ď i ď k`, V pηpv1,iqq contains a vertex wi and tw1, . . . , wk`u admits a
pZ, kq-partition.

v1,1 v1,2 v1,3
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` ¨ Gh : ` disjoint union of copies of Gh

Lemma
Every pZ, k, `q-rooted grid expansion of order k`ph` 1q ` 1 contains k pairwise
vertex-disjoint pZ, `q-intersecting ` ¨ Gh-expansions.

Every pZ, k, `q-rooted grid expansion of order k`p14|V pHq| ` 1q ` 1 contains k pairwise
vertex-disjoint pZ, `q-intersecting H-expansions.

H1p1q H2p1qH1p2q H2p2q H1p3q H2p3q

v1v2v3v4v5v6

k “ 3, ` “ 2

Z1 “ tv1, v3u, Z2 “ tv6u, Z3 “ tv4u, Z4 “ tv2, v5u

components of H “ H1, H2
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Rooted Grid Theorem (Colorful version)

Let g ě k` and n ě gpk2`2 ` 1q ` k`. If G contains a Gn-expansion, then either there is
a separation pA,Bq of order less than k` in G such that

BzV pAq contains at most `´ 1 sets of Z and contains a Gn´k`-expansion,

or there is a pZ, k, `q-rooted grid expansion of order g.

Original version was shown by Marx, Seymour, and Wollan (13).
One can find one of them in polypk ¨ ` ¨ |V pGq|q.

A B

ď `´ 1 sets of Z

ă k`
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2. Pure pZ, `q-intersecting H-expansions
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A subgraph F of a graph G is called a pure pZ, `q-intersecting H-expansion if there
exist a subset H “ tH1, . . . , Htu of the set of components of H and a graph H 1

induced on the vertex set
Ť

HiPHHi, and a model η of H 1 in G, and an injection

α : t1, . . . , tu Ñ 2Z such that

F is the image of η,

each αpiq is non-empty and for Z P αpiq, ηpV pHiqq X Z ‰ H,

αp1q, . . . , αptq are pairwise disjoint, and

|
Ť

1ďiďt αpiq| “ `.

Z1

Z2

Z3

H1

H2

H3

H4

Z “ tZ1, Z2, Z3u

components of H “ H1, H2, H3, H4
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Big Idea : First establish the Erdős-Pósa property of pure pZ, `q-intersecting
H-expansions. (Irrelavent vertex argument is possible)

Do not confuse :
no k disjoint pZ, `q-intersecting H-expansions Û no k disjoint pure pZ, `q-intersecting
H-expansions.
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Theorem (E-P property for pure expansions)

For positive integers k, `, h and a non-empty planar graph H with h vertices and at least
`´ 1 components, there exists a function f1pk, `, hq with the following property: Either

(1) G contains k pairwise vertex-disjoint pure pZ, `q-intersecting H-expansions.

(2) There is a vertex subset T of size at most f1pk, `, hq in G such that GzT contains
no pure pZ, `q-intersecting H-expansions.

Proof : Assume ` “ 2 and suppose G has a large grid expansion.

By Rooted Grid Theorem, G has either a pZ, k, 2q-rooted grid expansion, or a separation
pA,Bq of order at most 2k where

BzV pAq contains at most 1 set of Z (say Z 1q and contains Gg´2k-expansion

A B

ď 1 sets of Z

In the second case, we apply Rooted Grid Theorem again on BzV pAq with Z 1,
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A B

In Case (1), AzV pBq contains no k disjoint pure pZzZ 1, 1q-intersecting H-expansions.
(Since H has ě 2 components, we can complete them using pZ 1, k, 1q-rooted grid
expansion in BzV pAq.)
Ñ By induction on `, there is a vertex set T that meets all pure pZzZ 1, 1q-intersecting
H-expansions in AzV pBq.
Ñ T Y V pAXBq is a vertex set which meets all pure pZ, 2q-intersecting H-expansions.

In Case (2), we can find an irrelavent vertex.
(* every component of pure expansions cannot be in BzV pAq.)
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Now suppose that G admits a tree-decomposition of bounded width (say w).

d-subtree : subtree consisting of at most d components

Theorem (Burger 04)

Let T be a tree and let k, d be positive integers. Let F be a set of d-subtrees of T .
Either

1 T has k pairwise vertex-disjoint subgraphs in F .

2 There is a vertex subset S of size at most pd2 ´ d` 1qpk ´ 1q such that T zS has
no subgraphs in F .

Use the fact that : all bags containing a vertex of a (pure) H-expansion induce an
h-subtree in the tree-decomposition.

We have a pw ` 1qph2
´ h` 1qpk ´ 1q bound on the covering set if G has no k pairwise

vertex-disjoint (pure) pZ, `q-intersecting H-expansions.
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3. General pZ, `q-intersecting H-expansions
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Theorem
For positive integers k, `, h and a non-empty planar graph H with h vertices and at least
`´ 1 components, there exists a function fpk, `, hq with the following property: Either

(1) G contains k pairwise vertex-disjoint pZ, `q-intersecting H-expansions.

(2) There is a vertex subset T of size at most fpk, `, hq in G such that GzT contains
no pZ, `q-intersecting H-expansions.

Unless G has k pairwise vertex-disjoint pZ, 2q-intersecting H-expansions, we obtain

(1) a separation pA,Bq of order at most 2k where

§ BzV pAq contains 1 set of Z (say, Z 1) and contains pZ 1, k, 1q-rooted grid
expansion of order 2kp14|V pHq| ` 1q, or

(2) a separation pA,Bq of order at most 4k where

§ BzV pAq contains no sets of Z and contains Gg´4k-expansion.

Case (2): AzV pBq contains no k disjoint pure pZ, 2q-intersecting H-expansions which
are not H-expansions. Also, AzV pBq contains no k disjoint pure pZ, 2q-intersecting
H-expansions which are H-expansions.

Ñ AzV pBq contains no 2k ´ 1 disjoint pure pZ, 2q-intersecting H-expansions.
By Theorem for pure expansions, there is a vertex set T that meets all pure
pZ, 2q-intersecting H-expansions. T Y V pAXBq gives a covering set.
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§ BzV pAq contains no sets of Z and contains Gg´4k-expansion.

Case (2): AzV pBq contains no k disjoint pure pZ, 2q-intersecting H-expansions which
are not H-expansions. Also, AzV pBq contains no k disjoint pure pZ, 2q-intersecting
H-expansions which are H-expansions.

Ñ AzV pBq contains no 2k ´ 1 disjoint pure pZ, 2q-intersecting H-expansions.
By Theorem for pure expansions, there is a vertex set T that meets all pure
pZ, 2q-intersecting H-expansions. T Y V pAXBq gives a covering set.

21 / 24



Theorem
For positive integers k, `, h and a non-empty planar graph H with h vertices and at least
`´ 1 components, there exists a function fpk, `, hq with the following property: Either

(1) G contains k pairwise vertex-disjoint pZ, `q-intersecting H-expansions.

(2) There is a vertex subset T of size at most fpk, `, hq in G such that GzT contains
no pZ, `q-intersecting H-expansions.

Unless G has k pairwise vertex-disjoint pZ, 2q-intersecting H-expansions, we obtain

(1) a separation pA,Bq of order at most 2k where

§ BzV pAq contains 1 set of Z (say, Z 1) and contains pZ 1, k, 1q-rooted grid
expansion of order 2kp14|V pHq| ` 1q, or

(2) a separation pA,Bq of order at most 4k where

§ BzV pAq contains no sets of Z and contains Gg´4k-expansion.

Case (2): AzV pBq contains no k disjoint pure pZ, 2q-intersecting H-expansions which
are not H-expansions. Also, AzV pBq contains no k disjoint pure pZ, 2q-intersecting
H-expansions which are H-expansions.

Ñ AzV pBq contains no 2k ´ 1 disjoint pure pZ, 2q-intersecting H-expansions.
By Theorem for pure expansions, there is a vertex set T that meets all pure
pZ, 2q-intersecting H-expansions. T Y V pAXBq gives a covering set.

21 / 24



Conclusions

The class of pZ, `q-intersecting H-expansions has the Erdős-Pósa property
iff H is planar and it has at least `´ 1 components.

Is there an FPT algorithm parameterized by k, `, |V pHq|?
If either ` “ 1 or the number of sets in Z is given as a constant, then yes.
We guess that it is true for arbitrary m.

Rooted H-expansions?
(some specific vertex-model contains a vertex from some given set)

Cycles? H-subdivisions?
- Does the class of pZ, 2q-intersecting cycles satisfy the Erdős-Pósa property?

Thank you for your attention.
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Figure: This is an example when ` “ 8 and the number of components of H is 5.

24 / 24


	Motivations

