Erdős-Pósa property of planar *H*-minor models with prescribed vertex sets

- Dichotomy theorem

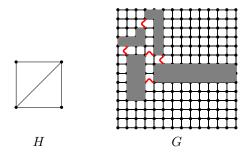
O-joung Kwon

Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences in Budapest, Hungary

Joint work with Dániel Marx (Hungarian Academy of Sciences)

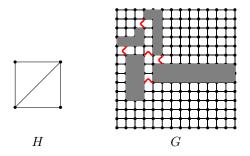
> GROW 2015 13th, Oct, 2015

H-expansion (*H*-minor model) :



G has an H-expansion \leftrightarrow H is isomorphic to a minor of G.

H-expansion (*H*-minor model) :



G has an H-expansion \leftrightarrow H is isomorphic to a minor of G.

A graph class C satisfies the **Erdős-Pósa** property if for every graph G and an integer k, there exists a function f(k, C) such that either

- G contains k pairwise vertex-disjoint subgraphs of C, or
- there is a vertex set of size at most f(k, C) that meets all subgraphs in C.

Question : For every graph H, does the class of H-expansions have the Erdős-Pósa property?

Question : For every graph H, does the class of H-expansions have the Erdős-Pósa property?

NO.

Robertson, Seymour and Thomas (94)

The class of all H-expansions satisfies the Erdős-Pósa property if and only if H is planar.

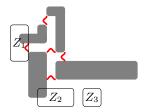
Question : For every graph H, does the class of H-expansions have the Erdős-Pósa property?

NO.

Robertson, Seymour and Thomas (94)

The class of all H-expansions satisfies the Erdős-Pósa property if and only if H is planar.

We would like to think about H-expansions containing some vertices of prescribed sets.



Let H be one vertex graph. Let G be a graph, S, T be disjoint vertex subsets of G. Then H-expansions intersecting both S and T satisfy the Erdős-Pósa property.

Let H be one vertex graph. Let G be a graph, S, T be disjoint vertex subsets of G. Then H-expansions intersecting both S and T satisfy the Erdős-Pósa property.

 $\mathsf{Proof}:$ Suppose there are no k pairwise vertex-disjoint H-expansions intersecting both S and T.

 \rightarrow There are no k pairwise vertex-disjoint paths from S to T.

 \rightarrow By Menger's theorem, there is a vertex set A of size at most k-1 that meets all paths from S to T.

Let H be one vertex graph. Let G be a graph, S, T be disjoint vertex subsets of G. Then H-expansions intersecting both S and T satisfy the Erdős-Pósa property.

Proof : Suppose there are no k pairwise vertex-disjoint $H\mbox{-expansions}$ intersecting both S and T.

- \rightarrow There are no k pairwise vertex-disjoint paths from S to T.
- \rightarrow By Menger's theorem, there is a vertex set A of size at most k-1 that meets all paths from S to T.
- \rightarrow A meets all H-expansions intersecting both S and T.

Let H be one vertex graph. Let G be a graph, S, T be disjoint vertex subsets of G. Then H-expansions intersecting both S and T satisfy the Erdős-Pósa property.

 $\mathsf{Proof}:$ Suppose there are no k pairwise vertex-disjoint H-expansions intersecting both S and T.

 \rightarrow There are no k pairwise vertex-disjoint paths from S to T.

 \rightarrow By Menger's theorem, there is a vertex set A of size at most k-1 that meets all paths from S to T.

 \rightarrow A meets all H-expansions intersecting both S and T.

Let H be one vertex graph. Let G be a graph, S_1, \ldots, S_m be disjoint vertex subsets of G. Then H-expansions intersecting at least two sets of S_1, \ldots, S_m satisfy the Erdős-Pósa property.

Obtained from Mader's S-path Theorem (78).

Let G be a graph, and Z_1, \ldots, Z_m be (not necessarily disjoint) vertex subsets of G, $\mathcal{Z} := \{Z_1, \ldots, Z_m\}.$

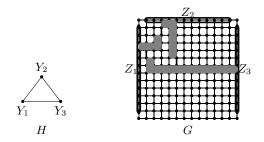
An *H*-expansion *F* is called (\mathcal{Z}, ℓ) -intersecting if there are ℓ distinct sets *Z* of \mathcal{Z} where $V(F) \cap Z \neq \emptyset$.

Question : Does the class of (\mathcal{Z}, ℓ) -intersecting H-expansions have the Erdős-Pósa property?

Let G be a graph, and Z_1, \ldots, Z_m be (not necessarily disjoint) vertex subsets of G, $\mathcal{Z} := \{Z_1, \ldots, Z_m\}.$

An *H*-expansion *F* is called (\mathcal{Z}, ℓ) -intersecting if there are ℓ distinct sets *Z* of \mathcal{Z} where $V(F) \cap Z \neq \emptyset$.

Question : Does the class of (\mathcal{Z}, ℓ) -intersecting *H*-expansions have the Erdős-Pósa property? NO in general.



There are no two pairwise vertex-disjoint $(\mathcal{Z},3)$ -intersecting *H*-expansions.

The class of (\mathcal{Z}, ℓ) -intersecting H-expansions has the Erdős-Pósa property if and only if

 \bullet H is planar and

The class of (\mathcal{Z}, ℓ) -intersecting H-expansions has the Erdős-Pósa property if and only if

- H is planar and
- the number of components of H is at least $\ell 1$.

The class of (\mathcal{Z}, ℓ) -intersecting H-expansions has the Erdős-Pósa property if and only if

- H is planar and
- the number of components of H is at least $\ell 1$.

Our bound on the covering set significantly depends on the function in Grid Minor Theorem. By Chekuri and Chuzhoy (14), we have a polynomial bound in $k, \ell, |V(H)|$, and the bound does not depend on the number of given prescribed sets in \mathcal{Z} .

イロン イロン イヨン イヨン 三日

The class of (\mathcal{Z}, ℓ) -intersecting *H*-expansions has the Erdős-Pósa property if and only if

- H is planar and
- the number of components of H is at least $\ell 1$.

Our bound on the covering set significantly depends on the function in Grid Minor Theorem. By Chekuri and Chuzhoy (14), we have a polynomial bound in $k, \ell, |V(H)|$, and the bound does not depend on the number of given prescribed sets in \mathcal{Z} .

Ingredients :

- (1) slightly improvement of Rooted Grid Theorem (Marx, Seymour, Wollan 13).
- (2) We prove the Erdős-Pósa property for pure (\mathcal{Z}, ℓ) -intersecting *H*-expansions.
- (3) Theorem by Burger (04) for bounded tree-width case.
- (4) Reducing the original problem into pure expansions.

- We will show by induction on $\ell.$ We assume that H is planar. For easier discussion, we assume that H consists of at least ℓ components.

1. Rooted Grid Expansion

Let Z_1, \ldots, Z_m be (not necessarily disjoint) vertex subsets of $G, \mathcal{Z} := \{Z_1, \ldots, Z_m\}$.

A vertex set $W \subseteq V(G)$ is said to admit a (\mathcal{Z}, k) -partition if there is a partition L_1, \ldots, L_x of W and an injection $\gamma : \{1, \ldots, x\} \to \{1, \ldots, m\}$ such that

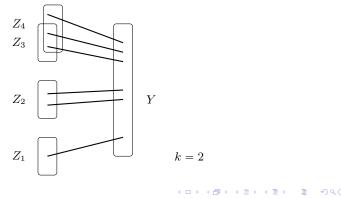
• $|L_i| \leq k$ and $L_i \subseteq Z_{\gamma(i)}$.

Let Z_1, \ldots, Z_m be (not necessarily disjoint) vertex subsets of $G, \mathcal{Z} := \{Z_1, \ldots, Z_m\}$.

A vertex set $W \subseteq V(G)$ is said to admit a (\mathcal{Z}, k) -partition if there is a partition L_1, \ldots, L_x of W and an injection $\gamma : \{1, \ldots, x\} \to \{1, \ldots, m\}$ such that

• $|L_i| \leq k$ and $L_i \subseteq Z_{\gamma(i)}$.

For a vertex set Y of G, a set of pairwise vertex-disjoint n paths from $\bigcup_{Z \in \mathbb{Z}} Z$ to Y is called a (\mathcal{Z}, Y, k) -linkage of order n if the end vertices in $\bigcup_{Z \in \mathbb{Z}} Z$ admit a (\mathcal{Z}, k) -partition.



Lemma (Variant of Menger)

For k, ℓ and $Y \subseteq V(G)$, either G contains

• a separation (A, B) in G of order less than $k\ell$ such that $Y \subseteq V(B)$ and $B \setminus V(A)$ contains at most $\ell - 1$ sets of \mathcal{Z} , or

イロト 不得下 イヨト イヨト 二日

9/24

• a (\mathcal{Z}, Y, k) -linkage of order $k\ell$.

Proof Idea : Adding a set of k vertices that are completely adjacent to Z_i for each i.

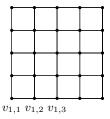
Lemma (Variant of Menger)

For k, ℓ and $Y \subseteq V(G)$, either G contains

- a separation (A, B) in G of order less than $k\ell$ such that $Y \subseteq V(B)$ and $B \setminus V(A)$ contains at most $\ell 1$ sets of \mathcal{Z} , or
- a (\mathcal{Z}, Y, k) -linkage of order $k\ell$.

Proof Idea : Adding a set of k vertices that are completely adjacent to Z_i for each i.

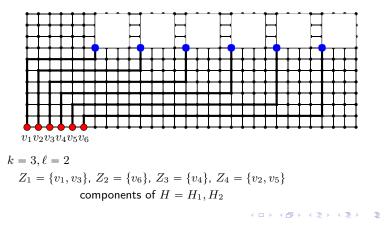
A (\mathcal{Z}, k, ℓ) -rooted grid expansion of order g is a \mathcal{G}_g -expansion satisfying the property that for each $1 \leq i \leq k\ell$, $V(\eta(v_{1,i}))$ contains a vertex w_i and $\{w_1, \ldots, w_{k\ell}\}$ admits a (\mathcal{Z}, k) -partition.



 $\ell \cdot \mathcal{G}_h : \ell$ disjoint union of copies of \mathcal{G}_h

Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(h+1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting $\ell \cdot \mathcal{G}_h$ -expansions.

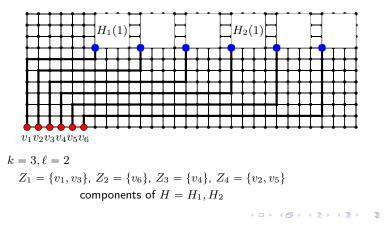
Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(14|V(H)| + 1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.



 $\ell \cdot \mathcal{G}_h : \ell$ disjoint union of copies of \mathcal{G}_h

Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(h+1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting $\ell \cdot \mathcal{G}_h$ -expansions.

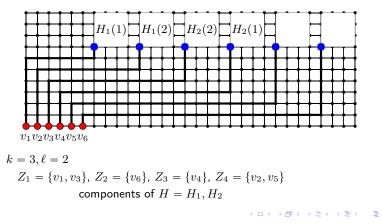
Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(14|V(H)| + 1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.



 $\ell \cdot \mathcal{G}_h : \ell$ disjoint union of copies of \mathcal{G}_h

Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(h+1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting $\ell \cdot \mathcal{G}_h$ -expansions.

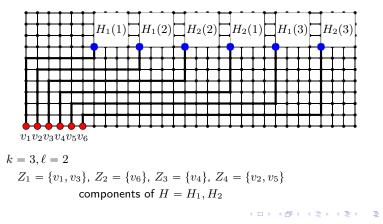
Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(14|V(H)| + 1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.



 $\ell \cdot \mathcal{G}_h : \ell$ disjoint union of copies of \mathcal{G}_h

Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(h+1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting $\ell \cdot \mathcal{G}_h$ -expansions.

Every (\mathcal{Z}, k, ℓ) -rooted grid expansion of order $k\ell(14|V(H)| + 1) + 1$ contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.



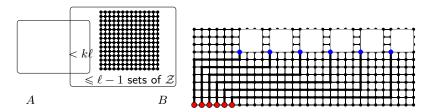
Rooted Grid Theorem (Colorful version)

Let $g \ge k\ell$ and $n \ge g(k^2\ell^2 + 1) + k\ell$. If G contains a \mathcal{G}_n -expansion, then either there is a separation (A, B) of order less than $k\ell$ in G such that

• $B \setminus V(A)$ contains at most $\ell - 1$ sets of Z and contains a $\mathcal{G}_{n-k\ell}$ -expansion,

or there is a (\mathcal{Z}, k, ℓ) -rooted grid expansion of order g.

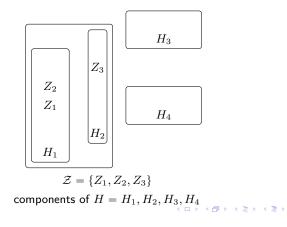
Original version was shown by Marx, Seymour, and Wollan (13). One can find one of them in $poly(k \cdot l \cdot |V(G)|)$.



2. Pure (\mathcal{Z}, ℓ) -intersecting H-expansions

A subgraph F of a graph G is called a pure (\mathcal{Z}, ℓ) -intersecting H-expansion if there exist a subset $\mathcal{H} = \{H_1, \ldots, H_t\}$ of the set of components of H and a graph H' induced on the vertex set $\bigcup_{H_i \in \mathcal{H}} H_i$, and a model η of H' in G, and an injection $\alpha : \{1, \ldots, t\} \rightarrow 2^{\mathcal{Z}}$ such that

- F is the image of η ,
- each $\alpha(i)$ is non-empty and for $Z \in \alpha(i)$, $\eta(V(H_i)) \cap Z \neq \emptyset$,
- $\alpha(1),\ldots,\alpha(t)$ are pairwise disjoint, and
- $|\bigcup_{1 \leq i \leq t} \alpha(i)| = \ell.$



Big Idea : First establish the Erdős-Pósa property of pure (Z, ℓ)-intersecting H-expansions. (Irrelavent vertex argument is possible)

Do not confuse :

no k disjoint $(\mathcal{Z},\ell)\text{-intersecting }H\text{-expansions}\twoheadrightarrow$ no k disjoint pure $(\mathcal{Z},\ell)\text{-intersecting }H\text{-expansions}.$

Theorem (E-P property for pure expansions)

For positive integers k, ℓ, h and a non-empty planar graph H with h vertices and at least $\ell - 1$ components, there exists a function $f_1(k, \ell, h)$ with the following property: Either

- (1) G contains k pairwise vertex-disjoint pure (\mathcal{Z}, ℓ) -intersecting H-expansions.
- (2) There is a vertex subset T of size at most $f_1(k, \ell, h)$ in G such that $G \setminus T$ contains no pure (\mathcal{Z}, ℓ) -intersecting H-expansions.

Proof : Assume $\ell = 2$ and suppose G has a large grid expansion.

Theorem (E-P property for pure expansions)

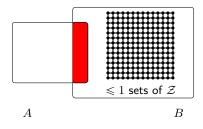
For positive integers k, ℓ, h and a non-empty planar graph H with h vertices and at least $\ell - 1$ components, there exists a function $f_1(k, \ell, h)$ with the following property: Either

- (1) G contains k pairwise vertex-disjoint pure (\mathcal{Z}, ℓ) -intersecting H-expansions.
- (2) There is a vertex subset T of size at most $f_1(k, \ell, h)$ in G such that $G \setminus T$ contains no pure (\mathcal{Z}, ℓ) -intersecting H-expansions.

Proof : Assume $\ell = 2$ and suppose G has a large grid expansion.

By Rooted Grid Theorem, G has either a $(\mathcal{Z}, k, 2)$ -rooted grid expansion, or a separation (A, B) of order at most 2k where

• $B \setminus V(A)$ contains at most 1 set of Z (say Z') and contains \mathcal{G}_{g-2k} -expansion



Theorem (E-P property for pure expansions)

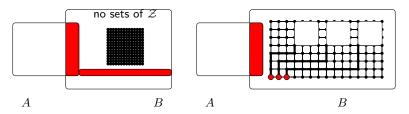
For positive integers k, ℓ, h and a non-empty planar graph H with h vertices and at least $\ell - 1$ components, there exists a function $f_1(k, \ell, h)$ with the following property: Either

- (1) G contains k pairwise vertex-disjoint pure (\mathcal{Z}, ℓ) -intersecting H-expansions.
- (2) There is a vertex subset T of size at most f₁(k, ℓ, h) in G such that G\T contains no pure (Z, ℓ)-intersecting H-expansions.

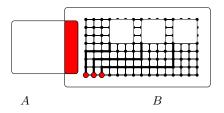
Proof : Assume $\ell = 2$ and suppose G has a large grid expansion.

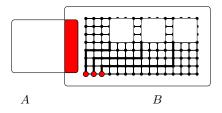
By Rooted Grid Theorem, G has either a $(\mathcal{Z}, k, 2)$ -rooted grid expansion, or a separation (A, B) of order at most 2k where

• $B \setminus V(A)$ contains at most 1 set of Z (say Z') and contains \mathcal{G}_{g-2k} -expansion

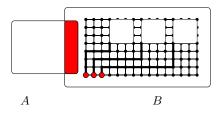


We apply Rooted Grid Theorem again on $B \setminus V(A)$ with \mathcal{Z}'_{\Box} , and \mathcal{Z}'_{\Box} .



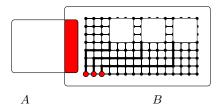


In Case (1), $A \setminus V(B)$ contains no k disjoint pure $(\mathcal{Z} \setminus \mathcal{Z}', 1)$ -intersecting H-expansions. (Since H has ≥ 2 components, we can complete them using $(\mathcal{Z}', k, 1)$ -rooted grid expansion in $B \setminus V(A)$.)



In Case (1), $A \setminus V(B)$ contains no k disjoint pure $(\mathcal{Z} \setminus \mathcal{Z}', 1)$ -intersecting H-expansions. (Since H has ≥ 2 components, we can complete them using $(\mathcal{Z}', k, 1)$ -rooted grid expansion in $B \setminus V(A)$.)

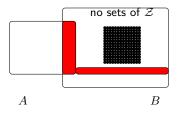
 \rightarrow By induction on ℓ , there is a vertex set T that meets all pure $(\mathcal{Z} \setminus \mathcal{Z}', 1)$ -intersecting H-expansions in $A \setminus V(B)$.



In Case (1), $A \setminus V(B)$ contains no k disjoint pure $(\mathbb{Z} \setminus \mathbb{Z}', 1)$ -intersecting H-expansions. (Since H has ≥ 2 components, we can complete them using $(\mathbb{Z}', k, 1)$ -rooted grid expansion in $B \setminus V(A)$.)

 \rightarrow By induction on ℓ , there is a vertex set T that meets all pure $(\mathcal{Z} \setminus \mathcal{Z}', 1)$ -intersecting H-expansions in $A \setminus V(B)$.

 $\rightarrow T \cup V(A \cap B)$ is a vertex set which meets all pure $(\mathcal{Z}, 2)$ -intersecting H-expansions.



In Case (1), $A \setminus V(B)$ contains no pure $(Z \setminus Z', 1)$ -intersecting H-expansions. (Since H has ≥ 2 components, we can complete them using (Z', k, 1)-rooted grid expansion in $B \setminus V(A)$.)

 \to By induction on ℓ , there is a vertex set T that meets all pure $(\mathcal{Z} \backslash \mathcal{Z}', 1)$ -intersecting H-expansions.

 $\rightarrow T \cup V(A \cap B)$ is a vertex set which meets all pure $(\mathcal{Z}, 2)$ -intersecting H-expansions.

In Case (2), we can find an irrelavent vertex.

(* every component of pure expansions cannot be in $B \setminus V(A)$.)

Now suppose that G admits a tree-decomposition of bounded width (say w).

d-subtree : subtree consisting of at most d components

Theorem (Burger 04)

Let T be a tree and let k,d be positive integers. Let ${\mathcal F}$ be a set of d-subtrees of T. Either

- 1 T has k pairwise vertex-disjoint subgraphs in \mathcal{F} .
- 2 There is a vertex subset S of size at most $(d^2 d + 1)(k 1)$ such that $T \setminus S$ has no subgraphs in \mathcal{F} .

Use the fact that : all bags containing a vertex of a (pure) H-expansion induce an h-subtree in the tree-decomposition.

We have a $(w + 1)(h^2 - h + 1)(k - 1)$ bound on the covering set if G has no k pairwise vertex-disjoint (pure) (\mathcal{Z}, ℓ) -intersecting H-expansions.

3. General (\mathcal{Z}, ℓ) -intersecting *H*-expansions

Theorem

For positive integers k, ℓ, h and a non-empty planar graph H with h vertices and at least $\ell - 1$ components, there exists a function $f(k, \ell, h)$ with the following property: Either

- (1) G contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.
- (2) There is a vertex subset T of size at most f(k, ℓ, h) in G such that G\T contains no (Z, ℓ)-intersecting H-expansions.

Unless G has k pairwise vertex-disjoint $(\mathcal{Z}, 2)$ -intersecting H-expansions, we obtain

- (1) a separation (A, B) of order at most 2k where
 - $B \setminus V(A)$ contains 1 set of \mathcal{Z} (say, \mathcal{Z}') and contains $(\mathcal{Z}', k, 1)$ -rooted grid expansion of order 2k(14|V(H)| + 1), or

(2) a separation (A, B) of order at most 4k where

• $B \setminus V(A)$ contains no sets of \mathcal{Z} and contains \mathcal{G}_{g-4k} -expansion.

Theorem

For positive integers k, ℓ, h and a non-empty planar graph H with h vertices and at least $\ell - 1$ components, there exists a function $f(k, \ell, h)$ with the following property: Either

- (1) G contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.
- (2) There is a vertex subset T of size at most f(k, ℓ, h) in G such that G\T contains no (Z, ℓ)-intersecting H-expansions.

Unless G has k pairwise vertex-disjoint $(\mathcal{Z}, 2)$ -intersecting H-expansions, we obtain

- (1) a separation (A, B) of order at most 2k where
 - $B \setminus V(A)$ contains 1 set of \mathcal{Z} (say, \mathcal{Z}') and contains $(\mathcal{Z}', k, 1)$ -rooted grid expansion of order 2k(14|V(H)| + 1), or
- (2) a separation (A, B) of order at most 4k where
 - $B \setminus V(A)$ contains no sets of Z and contains \mathcal{G}_{g-4k} -expansion.

Case (2): $A \setminus V(B)$ contains no k disjoint pure $(\mathcal{Z}, 2)$ -intersecting H-expansions which are not H-expansions. Also, $A \setminus V(B)$ contains no k disjoint pure $(\mathcal{Z}, 2)$ -intersecting H-expansions which are H-expansions.

Theorem

For positive integers k, ℓ, h and a non-empty planar graph H with h vertices and at least $\ell - 1$ components, there exists a function $f(k, \ell, h)$ with the following property: Either

- (1) G contains k pairwise vertex-disjoint (\mathcal{Z}, ℓ) -intersecting H-expansions.
- (2) There is a vertex subset T of size at most f(k, ℓ, h) in G such that G\T contains no (Z, ℓ)-intersecting H-expansions.

Unless G has k pairwise vertex-disjoint $(\mathcal{Z}, 2)$ -intersecting H-expansions, we obtain

- (1) a separation (A, B) of order at most 2k where
 - $B \setminus V(A)$ contains 1 set of \mathcal{Z} (say, \mathcal{Z}') and contains $(\mathcal{Z}', k, 1)$ -rooted grid expansion of order 2k(14|V(H)| + 1), or
- (2) a separation (A, B) of order at most 4k where
 - $B \setminus V(A)$ contains no sets of \mathcal{Z} and contains \mathcal{G}_{g-4k} -expansion.

Case (2): $A \setminus V(B)$ contains no k disjoint pure $(\mathcal{Z}, 2)$ -intersecting H-expansions which are not H-expansions. Also, $A \setminus V(B)$ contains no k disjoint pure $(\mathcal{Z}, 2)$ -intersecting H-expansions which are H-expansions.

 $\rightarrow A \setminus V(B)$ contains no 2k - 1 disjoint pure $(\mathcal{Z}, 2)$ -intersecting H-expansions. By Theorem for pure expansions, there is a vertex set T that meets all pure $(\mathcal{Z}, 2)$ -intersecting H-expansions. $T \cup V(A \cap B)$ gives a covering set.

Conclusions

- The class of (Z, ℓ)-intersecting H-expansions has the Erdős-Pósa property iff H is planar and it has at least ℓ − 1 components.
- Is there an FPT algorithm parameterized by $k, \ell, |V(H)|$? If either $\ell = 1$ or the number of sets in \mathcal{Z} is given as a constant, then yes. We guess that it is true for arbitrary m.

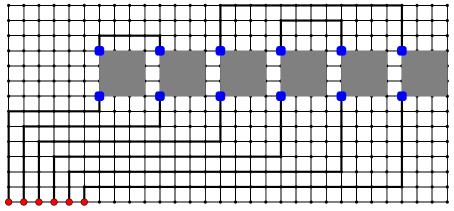
Conclusions

- The class of (Z, ℓ)-intersecting H-expansions has the Erdős-Pósa property iff H is planar and it has at least ℓ − 1 components.
- Is there an FPT algorithm parameterized by $k, \ell, |V(H)|$? If either $\ell = 1$ or the number of sets in \mathcal{Z} is given as a constant, then yes. We guess that it is true for arbitrary m.
- Rooted *H*-expansions? (some specific vertex-model contains a vertex from some given set)
- Cycles? *H*-subdivisions?
 - Does the class of $(\mathcal{Z},2)\text{-intersecting cycles satisfy the Erdős-Pósa property?}$

Conclusions

- The class of (Z, ℓ)-intersecting H-expansions has the Erdős-Pósa property iff H is planar and it has at least ℓ − 1 components.
- Is there an FPT algorithm parameterized by $k, \ell, |V(H)|$? If either $\ell = 1$ or the number of sets in \mathcal{Z} is given as a constant, then yes. We guess that it is true for arbitrary m.
- Rooted *H*-expansions? (some specific vertex-model contains a vertex from some given set)
- Cycles? *H*-subdivisions?
 - Does the class of $(\mathcal{Z},2)\text{-intersecting cycles satisfy the Erdős-Pósa property?}$

Thank you for your attention.



 $v_1 v_2 v_3 v_4 v_5 v_6$

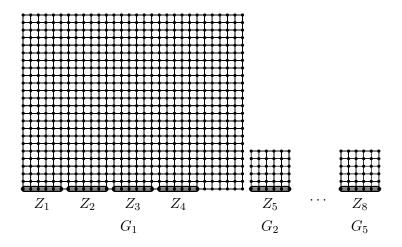


Figure: This is an example when $\ell = 8$ and the number of components of H is 5.