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Abstract

On general graphs

We show that a graph on n vertices has at most O(1.8668n)
minimal connected vertex covers and these can be listed in time
O(1.8668n).

However

We are not able to find a graph with more than 3(n−1)/3 ≈ 1.4422n

minimal connected vertex covers.

On graph classes

We show that graphs of chordality ≤ 5 have at most O(1.6181n)
minimal connected vertex covers.
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Abstract

On general graphs

We show that a graph on n vertices has at most O(1.8668n)
minimal connected vertex covers and these can be listed in time
O(1.8668n).

However

We are not able to find a graph with more than 3(n−1)/3 ≈ 1.4422n

minimal connected vertex covers.

On graph classes

We show that chordal graphs and distance hereditary graphs have
at most O(3n/3) minimal connected vertex covers.
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Enumeration algorithms

Enumeration in graphs

Given a property P, we want to list all the distinct vertex subsets
satisfying P in a given graph G on n vertices.

Trivial algorithm

If property P can be tested in polynomial time, we can check for
every subset of vertices of G whether it satisfies P and output it if
so in time O(2n · poly(n)).

More clever branching algorithms

Recursive algorithms with branching and reduction rules.

Running time very often gives an upper bound on the number
of objects that a graph can have.
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Minimal (connected) vertex covers

A set of vertices X in a graph G is a vertex cover if every edge of
G has an endpoint in X .

X is a connected vertex cover if X is a vertex cover and G [X ] is
connected.

A (connected) vertex cover X is minimal if no proper subset of X
is a (connected) vertex cover.

A connected vertex cover X is minimal if every x ∈ X is either a
cut vertex of G [X ] or it has a private edge.
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Vertex covers in general

Observation

X is a vertex cover of G = (V ,E ) if and only if V \ X is an
independent set of G.

If a vertex v is not in a vertex cover X then all neighbors of v
are in X .
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A classical example

Theorem (Moon and Moser; 1965)

Every graph on n vertices has at most 3n/3 < 1.4423n minimal
vertex covers,

and there are graphs that have 3n/3 < 1.4423n

minimal vertex covers, and the minimal vertex covers of a graph
can be enumerated in O(1.4423n) time.

The union of n/3 triangles has 3n/3 maximal independent sets and
thus also 3n/3 minimal vertex covers.
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Motivation

The problem of computing a minimum connected vertex cover
is as old as computing a minimum vertex cover.

The number of vertex covers of a graph and the enumeration
of these form pioneering examples of enumeration algorithms.

The maximum number of minimal connected vertex covers of
a graph or the enumeration of these has not been studied.

Enumeration and maximum number of minimal vertex covers
have been studied on graph classes. On triangle-free graphs
there are better (tight) bounds.

Computation of minimum sets is not a part of our motivation.
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Minimal connected vertex covers of general graphs

Theorem

The maximum number of minimal connected vertex covers of an
arbitrary graph is O(1.8668n), and these can be enumerated in
time O(1.8668n).

A graph with 3(n−1)/3 ≈ 1.4422 minimal connected vertex covers.
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Sketch of the proof

A recursive branching algorithm:

Let G be an input graph. Given two disjoint vertex subsets of G :

set S of selected vertices

set F of free vertices

Algorithm EnumCVC(S ,F ) generates all minimal connected
vertex covers X of G such that S ⊆ X ⊆ S ∪ F .

Initial call: EnumCVC(∅,V (G )).

Stop when: S is a minimal connected vertex cover or F is empty.
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Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities
of selecting it to be placed in S and discarding it from being
placed in minimal connected vertex covers containing S .

If there are two adjacent vertices v and w in F then:

select v : add v to S and delete v from F :
EnumCVC(S ∪ {v},F \ {v})
discard v : delete v from F , add all free neighbors of v to S
and delete them from F : EnumCVC(S ∪ N(v),F \ N[v ])

T (n) ≤ T (n − 1) + T (n − 2) → T (n) = O(1.6181n)
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Sketch of the proof

F

S S1 Sp

If F is an independent set then check every subset of F of size at
most p − 1, and combine it with S to see if it gives a minimal
connected vertex cover.

T (n) = O(1.6181n−|F | · 2|F |) = O(1.8668n)
(Balancing at |F | = 2n/3)
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Graphs of chordality at most 5

The chordality of a graph G is the length of a longest induced
(chordless) cycle in G .

Theorem

The maximum number of minimal connected vertex covers of a
graph of chordality at most 5 is at most 1.6181n, and these can be
enumerated in time O(1.6181n).
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The algorithm starts exactly as the previous algorithm until F
becomes an independent set:

F

S S1 Sp

Recall that the running time of this part is dominated by
O(1.6181n).
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Observations:

All edges with both endpoints in S are already covered.

Chordality does not increase when we contract edges.

We get a bipartite graph, hence of chordality at most 4.
These are exactly the chordal bipartite graphs.

Every chordal bipartite graph has a weakly simplicial vertex in
each partite set.
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A vertex in a graph is weakly simplicial if its neighborhood is an
independent set and the neighborhoods of its neighbors form a
chain under inclusion.

t

S

F

For a weakly simplicial vertex outside F , we branch on its
neighbors. Exactly one such neighbor can be selected.
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Running time and maximum number of leaves:

T (n) ≤ t · T (n − t)

→ T (n) = O(1.4423n)

The running time and the maximum number of leaves of the
search tree are dominated by the branching rule of the first part:
O(1.6181n)

Observe that the lower bound example has chordality at most 5.
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Chordal graphs

A graph is chordal if it has chordality at most 3.

Theorem

The maximum number of minimal connected vertex covers of a
chordal graph is at most 3n/3 < 1.4423n, and these can be
enumerated in time O(1.4423n).
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Chordal graphs

Lemma

Let G be a connected chordal graph and let C be its set of cut
vertices.

Let G � = G − C.

S is a minimal vertex cover of G � if and only if X = C ∪ S is a
minimal connected vertex cover of G.

Consequence: Enumerating minimal connected vertex covers is
equivalent to enumerating minimal vertex covers, which are at
most 3n/3 < 1.4423n in number and can be enumerated in time
O(1.4423n).
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Sketch of the proof of lemma

If X = C ∪ S is a minimal connected vertex cover of G then S is a
minimal vertex cover of G �

since exactly the edges incident to
vertices of C are covered by the vertices of C .

If S is a minimal vertex cover of G � then X = C ∪ S is a vertex
cover of G . We need to show that it is connected.

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

If X = C ∪ S is a minimal connected vertex cover of G then S is a
minimal vertex cover of G � since exactly the edges incident to
vertices of C are covered by the vertices of C .

If S is a minimal vertex cover of G � then X = C ∪ S is a vertex
cover of G . We need to show that it is connected.

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

If X = C ∪ S is a minimal connected vertex cover of G then S is a
minimal vertex cover of G � since exactly the edges incident to
vertices of C are covered by the vertices of C .

If S is a minimal vertex cover of G � then X = C ∪ S is a vertex
cover of G .

We need to show that it is connected.

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

If X = C ∪ S is a minimal connected vertex cover of G then S is a
minimal vertex cover of G � since exactly the edges incident to
vertices of C are covered by the vertices of C .

If S is a minimal vertex cover of G � then X = C ∪ S is a vertex
cover of G . We need to show that it is connected.

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Sketch of the proof of lemma

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers



Introduction
General graphs

Graphs of chordality at most 5
Chordal graphs

Other graph classes
Conclusion

Distance hereditary graphs

A graph G is distance-hereditary if for every connected induced
subgraph H of G , distH(u, v) = distG (u, v) for u, v ∈ V (H).

Theorem

The maximum number of minimal connected vertex covers of a
distance-hereditary graph is at most 2 · 3n/3, and these can be
enumerated in time O(1.4423n).
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Split graphs and cobipartite graphs

Proposition

The number of minimal connected vertex covers of a split graph G
is at most n, and these can be enumerated in time O(n).

The number of minimal connected vertex covers of a cobipartite
graph G is at most n2/4 + n, and these can be enumerated in time
O(n2).
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Summary

Graph Class Lower Bound Upper Bound

general 3(n−2)/3 3(n−1)/3 2n O(1.8668n)
chordality≤ 5 3(n−2)/3 3(n−1)/3 2n O(1.6181n)

chordal 3(n−2)/3 3(n−1)/3 O(1.7159n) 3n/3

strongly chordal 3(n−2)/3 3(n−1)/3 3n/3 3n/3

split 1.3195n n 1.3803n n
cobipartite 1.3195n n2/4 1.3803n n2/4 + n
interval 3(n−2)/3 3(n−1)/3 3(n−2)/3 3n/3

AT-free 3(n−2)/3 3(n−1)/3 O∗(3n/3) O(1.6181n)
distance-hereditary 3(n−2)/3 3(n−1)/3 3n/3 · n 2 · 3n/3

cographs m 3(n−1)/3 m 2 · 3n/3

Minimal connected dominating sets and
minimal connected vertex covers
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Open Questions : minimal connected vertex cover

What is the maximum number of minimal connected vertex
covers that a graph can have?

We conjecture that it is more than 3n/3.

How about graphs of bounded chordality?
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Open questions : minimal connected dominating set

Is it possible to enumerate all minimal connected dominating
sets of a graph in time O(cn) for c < 2?

Is it possible to get a non-algorithmic upper bound for the
number of minimal connected dominating sets?

Is it possible to improve the lower bound 3(n−2)/3?

Is it possible to improve the upper bound O(1.3803n) for split
graphs?
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Thank You!
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