Enumeration of Minimal Connected Vertex Covers and Dominating Sets

Dieter Kratsch Université de Lorraine, France

Joint work with Petr Golovach and Pinar Heggernes

GROW 2015, Aussois, October 11-15, 2015

Introduction

General graphs Graphs of chordality at most 5 Chordal graphs Other graph classes Conclusion

Abstract

Introduction General graphs Graphs of chordality at most 5 Chordal graphs

Other graph classes Conclusion

Abstract

On general graphs

We show that a graph on *n* vertices has at most $O(1.8668^n)$ minimal connected vertex covers and these can be listed in time $O(1.8668^n)$.

Abstract

On general graphs

We show that a graph on *n* vertices has at most $O(1.8668^n)$ minimal connected vertex covers and these can be listed in time $O(1.8668^n)$.

However

We are not able to find a graph with more than $3^{(n-1)/3} \approx 1.4422^n$ minimal connected vertex covers.

Abstract

On general graphs

We show that a graph on *n* vertices has at most $O(1.8668^n)$ minimal connected vertex covers and these can be listed in time $O(1.8668^n)$.

However

We are not able to find a graph with more than $3^{(n-1)/3} \approx 1.4422^n$ minimal connected vertex covers.

On graph classes

We show that graphs of chordality ≤ 5 have at most $O(1.6181^n)$ minimal connected vertex covers.

Abstract

On general graphs

We show that a graph on *n* vertices has at most $O(1.8668^n)$ minimal connected vertex covers and these can be listed in time $O(1.8668^n)$.

However

We are not able to find a graph with more than $3^{(n-1)/3} \approx 1.4422^n$ minimal connected vertex covers.

On graph classes

We show that chordal graphs and distance hereditary graphs have at most $O(3^{n/3})$ minimal connected vertex covers.

Enumeration algorithms

Enumeration in graphs

Given a property \mathcal{P} , we want to list all the distinct vertex subsets satisfying \mathcal{P} in a given graph G on n vertices.

Enumeration algorithms

Enumeration in graphs

Given a property \mathcal{P} , we want to list all the distinct vertex subsets satisfying \mathcal{P} in a given graph G on n vertices.

Trivial algorithm

If property \mathcal{P} can be tested in polynomial time, we can check for every subset of vertices of G whether it satisfies \mathcal{P} and output it if so in time $O(2^n \cdot poly(n))$.

Enumeration algorithms

Enumeration in graphs

Given a property \mathcal{P} , we want to list all the distinct vertex subsets satisfying \mathcal{P} in a given graph G on n vertices.

Trivial algorithm

If property \mathcal{P} can be tested in polynomial time, we can check for every subset of vertices of G whether it satisfies \mathcal{P} and output it if so in time $O(2^n \cdot poly(n))$.

More clever branching algorithms

- Recursive algorithms with branching and reduction rules.
- Running time very often gives an upper bound on the number of objects that a graph can have.

Minimal (connected) vertex covers

A set of vertices X in a graph G is a vertex cover if every edge of G has an endpoint in X.

Minimal (connected) vertex covers

A set of vertices X in a graph G is a vertex cover if every edge of G has an endpoint in X.

X is a connected vertex cover if X is a vertex cover and G[X] is connected.

Minimal (connected) vertex covers

A set of vertices X in a graph G is a vertex cover if every edge of G has an endpoint in X.

X is a connected vertex cover if X is a vertex cover and G[X] is connected.

A (connected) vertex cover X is minimal if no proper subset of X is a (connected) vertex cover.

Minimal (connected) vertex covers

A set of vertices X in a graph G is a vertex cover if every edge of G has an endpoint in X.

X is a connected vertex cover if X is a vertex cover and G[X] is connected.

A (connected) vertex cover X is minimal if no proper subset of X is a (connected) vertex cover.

A connected vertex cover X is minimal if every $x \in X$ is either a cut vertex of G[X] or it has a private edge.

Introduction

General graphs Graphs of chordality at most 5 Chordal graphs Other graph classes Conclusion

Vertex covers in general

Observation

X is a vertex cover of G = (V, E) if and only if V \ X is an independent set of G.

Introduction

General graphs Graphs of chordality at most 5 Chordal graphs Other graph classes Conclusion

Vertex covers in general

Observation

- X is a vertex cover of G = (V, E) if and only if V \ X is an independent set of G.
- If a vertex v is not in a vertex cover X then all neighbors of v are in X.

A classical example

Theorem (Moon and Moser; 1965)

Every graph on n vertices has at most $3^{n/3} < 1.4423^n$ minimal vertex covers,

A classical example

Theorem (Moon and Moser; 1965)

Every graph on n vertices has at most $3^{n/3} < 1.4423^n$ minimal vertex covers, and there are graphs that have $3^{n/3} < 1.4423^n$ minimal vertex covers,

A classical example

Theorem (Moon and Moser; 1965)

Every graph on n vertices has at most $3^{n/3} < 1.4423^n$ minimal vertex covers, and there are graphs that have $3^{n/3} < 1.4423^n$ minimal vertex covers, and the minimal vertex covers of a graph can be enumerated in $O(1.4423^n)$ time.

A classical example

Theorem (Moon and Moser; 1965)

Every graph on n vertices has at most $3^{n/3} < 1.4423^n$ minimal vertex covers, and there are graphs that have $3^{n/3} < 1.4423^n$ minimal vertex covers, and the minimal vertex covers of a graph can be enumerated in $O(1.4423^n)$ time.

The union of n/3 triangles has $3^{n/3}$ maximal independent sets and thus also $3^{n/3}$ minimal vertex covers.

• The problem of computing a minimum connected vertex cover is as old as computing a minimum vertex cover.

- The problem of computing a minimum connected vertex cover is as old as computing a minimum vertex cover.
- The number of vertex covers of a graph and the enumeration of these form pioneering examples of enumeration algorithms.

- The problem of computing a minimum connected vertex cover is as old as computing a minimum vertex cover.
- The number of vertex covers of a graph and the enumeration of these form pioneering examples of enumeration algorithms.
- The maximum number of minimal **connected** vertex covers of a graph or the enumeration of these has not been studied.

- The problem of computing a minimum connected vertex cover is as old as computing a minimum vertex cover.
- The number of vertex covers of a graph and the enumeration of these form pioneering examples of enumeration algorithms.
- The maximum number of minimal **connected** vertex covers of a graph or the enumeration of these has not been studied.
- Enumeration and maximum number of minimal vertex covers have been studied on graph classes. On triangle-free graphs there are better (tight) bounds.

- The problem of computing a minimum connected vertex cover is as old as computing a minimum vertex cover.
- The number of vertex covers of a graph and the enumeration of these form pioneering examples of enumeration algorithms.
- The maximum number of minimal **connected** vertex covers of a graph or the enumeration of these has not been studied.
- Enumeration and maximum number of minimal vertex covers have been studied on graph classes. On triangle-free graphs there are better (tight) bounds.
- Computation of minimum sets is not a part of our motivation.

Minimal connected vertex covers of general graphs

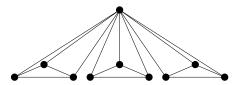
Theorem

The maximum number of minimal connected vertex covers of an arbitrary graph is $O(1.8668^n)$, and these can be enumerated in time $O(1.8668^n)$.

Minimal connected vertex covers of general graphs

Theorem

The maximum number of minimal connected vertex covers of an arbitrary graph is $O(1.8668^n)$, and these can be enumerated in time $O(1.8668^n)$.



A graph with $3^{(n-1)/3} \approx 1.4422$ minimal connected vertex covers.

Sketch of the proof

A recursive branching algorithm:

Sketch of the proof

A recursive branching algorithm:

Let G be an input graph. Given two disjoint vertex subsets of G:

- set S of selected vertices
- set *F* of free vertices

Sketch of the proof

A recursive branching algorithm:

Let G be an input graph. Given two disjoint vertex subsets of G:

- set S of selected vertices
- set *F* of free vertices

Algorithm ENUMCVC(S, F) generates all minimal connected vertex covers X of G such that $S \subseteq X \subseteq S \cup F$.

Sketch of the proof

A recursive branching algorithm:

Let G be an input graph. Given two disjoint vertex subsets of G:

- set *S* of selected vertices
- set F of free vertices

Algorithm ENUMCVC(S, F) generates all minimal connected vertex covers X of G such that $S \subseteq X \subseteq S \cup F$.

Initial call: ENUMCVC(\emptyset , V(G)).

Sketch of the proof

A recursive branching algorithm:

Let G be an input graph. Given two disjoint vertex subsets of G:

- set *S* of selected vertices
- set *F* of free vertices

Algorithm ENUMCVC(S, F) generates all minimal connected vertex covers X of G such that $S \subseteq X \subseteq S \cup F$.

Initial call: ENUMCVC(\emptyset , V(G)).

Stop when: S is a minimal connected vertex cover or F is empty.

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

If there are two adjacent vertices v and w in F then:

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

If there are two adjacent vertices v and w in F then:

• select v:

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

If there are two adjacent vertices v and w in F then:

• select v: add v to S and delete v from F:

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

If there are two adjacent vertices v and w in F then:

• select v: add v to S and delete v from F: ENUMCVC($S \cup \{v\}, F \setminus \{v\}$)

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

- select v: add v to S and delete v from F: ENUMCVC($S \cup \{v\}, F \setminus \{v\}$)
- discard v:

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

- select v: add v to S and delete v from F: ENUMCVC $(S \cup \{v\}, F \setminus \{v\})$
- **discard** *v*: delete *v* from *F*, add all free neighbors of *v* to *S* and delete them from *F*:

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

- select v: add v to S and delete v from F: ENUMCVC $(S \cup \{v\}, F \setminus \{v\})$
- discard v: delete v from F, add all free neighbors of v to S and delete them from F: ENUMCVC(S ∪ N(v), F \ N[v])

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

- select v: add v to S and delete v from F: ENUMCVC($S \cup \{v\}, F \setminus \{v\}$)
- discard v: delete v from F, add all free neighbors of v to S and delete them from F: ENUMCVC(S ∪ N(v), F \ N[v])

$$T(n) \leq T(n-1) + T(n-2)$$

Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

- select v: add v to S and delete v from F: ENUMCVC($S \cup \{v\}, F \setminus \{v\}$)
- discard v: delete v from F, add all free neighbors of v to S and delete them from F: ENUMCVC(S ∪ N(v), F \ N[v])

$$T(n) \leq T(n-1) + T(n-2) \rightarrow T(n) = O(1.6181^n)$$

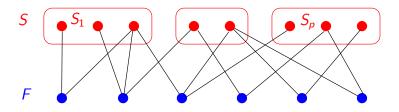
Sketch of the proof

At every step, we pick a vertex and we branch on the possibilities of **selecting** it to be placed in S and **discarding** it from being placed in minimal connected vertex covers containing S.

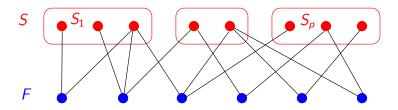
- select v: add v to S and delete v from F: ENUMCVC($S \cup \{v\}, F \setminus \{v\}$)
- discard v: delete v from F, add all free neighbors of v to S and delete them from F: ENUMCVC(S ∪ N(v), F \ N[v])

$$T(n) \le T(n-1) + T(n-2) \to T(n) = O(1.6181^{n-|F|})$$

Sketch of the proof

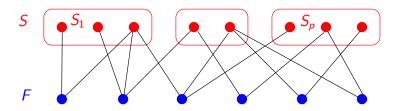


Sketch of the proof



If F is an independent set then check every subset of F of size at most p-1, and combine it with S to see if it gives a minimal connected vertex cover.

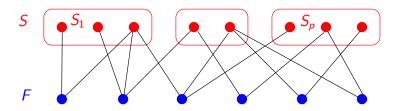
Sketch of the proof



If F is an independent set then check every subset of F of size at most p-1, and combine it with S to see if it gives a minimal connected vertex cover.

$$T(n) = O(1.6181^{n-|F|} \cdot 2^{|F|})$$

Sketch of the proof



If F is an independent set then check every subset of F of size at most p-1, and combine it with S to see if it gives a minimal connected vertex cover.

$$T(n) = O(1.6181^{n-|F|} \cdot 2^{|F|}) = O(1.8668^n)$$
(Balancing at $|F| = 2n/3$)

Graphs of chordality at most 5

The chordality of a graph G is the length of a longest induced (chordless) cycle in G.

Graphs of chordality at most 5

The chordality of a graph G is the length of a longest induced (chordless) cycle in G.

Theorem

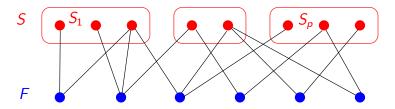
The maximum number of minimal connected vertex covers of a graph of chordality at most 5 is at most 1.6181^n , and these can be enumerated in time $O(1.6181^n)$.

Sketch of the proof

The algorithm starts exactly as the previous algorithm until *F* becomes an independent set:

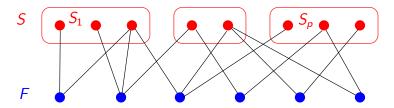
Sketch of the proof

The algorithm starts exactly as the previous algorithm until *F* becomes an independent set:



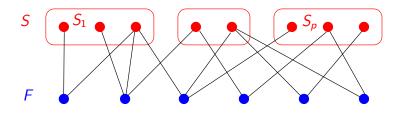
Sketch of the proof

The algorithm starts exactly as the previous algorithm until *F* becomes an independent set:

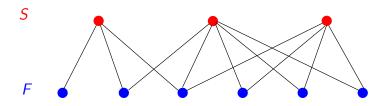


Recall that the running time of this part is dominated by $O(1.6181^n)$.

Sketch of the proof



Sketch of the proof



Sketch of the proof

Observations:

• All edges with both endpoints in *S* are already covered.

Sketch of the proof

- All edges with both endpoints in S are already covered.
- Chordality does not increase when we contract edges.

Sketch of the proof

- All edges with both endpoints in S are already covered.
- Chordality does not increase when we contract edges.
- We get a bipartite graph, hence of chordality at most 4.

Sketch of the proof

- All edges with both endpoints in S are already covered.
- Chordality does not increase when we contract edges.
- We get a bipartite graph, hence of chordality at most 4. These are exactly the chordal bipartite graphs.

Sketch of the proof

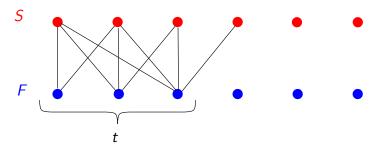
- All edges with both endpoints in S are already covered.
- Chordality does not increase when we contract edges.
- We get a bipartite graph, hence of chordality at most 4. These are exactly the chordal bipartite graphs.
- Every chordal bipartite graph has a weakly simplicial vertex in each partite set.

Sketch of the proof

A vertex in a graph is weakly simplicial if its neighborhood is an independent set and the neighborhoods of its neighbors form a chain under inclusion.

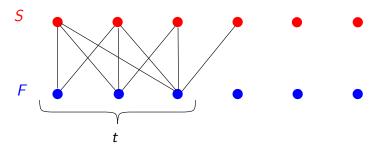
Sketch of the proof

A vertex in a graph is weakly simplicial if its neighborhood is an independent set and the neighborhoods of its neighbors form a chain under inclusion.



Sketch of the proof

A vertex in a graph is weakly simplicial if its neighborhood is an independent set and the neighborhoods of its neighbors form a chain under inclusion.

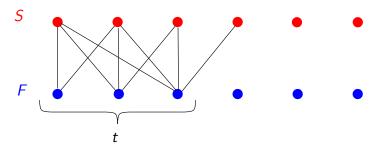


For a weakly simplicial vertex outside F, we branch on its neighbors.

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers

Sketch of the proof

A vertex in a graph is weakly simplicial if its neighborhood is an independent set and the neighborhoods of its neighbors form a chain under inclusion.



For a weakly simplicial vertex outside *F*, we branch on its neighbors. **Exactly one such neighbor can be selected.**

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers

Sketch of the proof

Running time and maximum number of leaves:

$$T(n) \leq t \cdot T(n-t)$$

Sketch of the proof

Running time and maximum number of leaves:

$$T(n) \leq t \cdot T(n-t) \rightarrow T(n) = O(1.4423^n)$$

Sketch of the proof

Running time and maximum number of leaves:

$$T(n) \leq t \cdot T(n-t) \rightarrow T(n) = O(1.4423^n)$$

The running time and the maximum number of leaves of the search tree are dominated by the branching rule of the first part: $O(1.6181^n)$

Sketch of the proof

Running time and maximum number of leaves:

$$T(n) \leq t \cdot T(n-t) \rightarrow T(n) = O(1.4423^n)$$

The running time and the maximum number of leaves of the search tree are dominated by the branching rule of the first part: $O(1.6181^n)$

Observe that the lower bound example has chordality at most 5.

Chordal graphs

A graph is chordal if it has chordality at most 3.

Chordal graphs

A graph is chordal if it has chordality at most 3.

Theorem

The maximum number of minimal connected vertex covers of a chordal graph is at most $3^{n/3} < 1.4423^n$, and these can be enumerated in time $O(1.4423^n)$.

Chordal graphs

Lemma

Let G be a connected chordal graph and let C be its set of cut vertices.

Chordal graphs

Lemma

Let G be a connected chordal graph and let C be its set of cut vertices. Let G' = G - C.

Chordal graphs

Lemma

Let G be a connected chordal graph and let C be its set of cut vertices. Let G' = G - C.

S is a minimal vertex cover of G' if and only if $X = C \cup S$ is a minimal connected vertex cover of G.

Chordal graphs

Lemma

Let G be a connected chordal graph and let C be its set of cut vertices. Let G' = G - C.

S is a minimal vertex cover of G' if and only if $X = C \cup S$ is a minimal connected vertex cover of G.

Consequence: Enumerating minimal connected vertex covers is equivalent to enumerating minimal vertex covers,

Chordal graphs

Lemma

Let G be a connected chordal graph and let C be its set of cut vertices. Let G' = G - C.

S is a minimal vertex cover of G' if and only if $X = C \cup S$ is a minimal connected vertex cover of G.

Consequence: Enumerating minimal connected vertex covers is equivalent to enumerating minimal vertex covers, which are at most $3^{n/3} < 1.4423^n$ in number and can be enumerated in time $O(1.4423^n)$.

Sketch of the proof of lemma

If $X = C \cup S$ is a minimal connected vertex cover of G then S is a minimal vertex cover of G'

Sketch of the proof of lemma

If $X = C \cup S$ is a minimal connected vertex cover of G then S is a minimal vertex cover of G' since exactly the edges incident to vertices of C are covered by the vertices of C.

Sketch of the proof of lemma

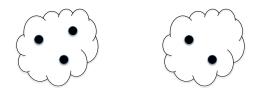
If $X = C \cup S$ is a minimal connected vertex cover of G then S is a minimal vertex cover of G' since exactly the edges incident to vertices of C are covered by the vertices of C.

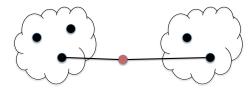
If S is a minimal vertex cover of G' then $X = C \cup S$ is a vertex cover of G.

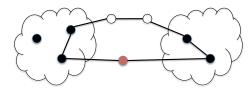
Sketch of the proof of lemma

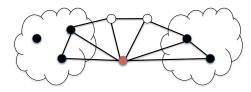
If $X = C \cup S$ is a minimal connected vertex cover of G then S is a minimal vertex cover of G' since exactly the edges incident to vertices of C are covered by the vertices of C.

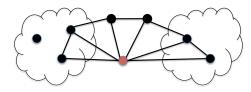
If S is a minimal vertex cover of G' then $X = C \cup S$ is a vertex cover of G. We need to show that it is connected.











Distance hereditary graphs

A graph G is distance-hereditary if for every connected induced subgraph H of G, $\operatorname{dist}_{H}(u, v) = \operatorname{dist}_{G}(u, v)$ for $u, v \in V(H)$.

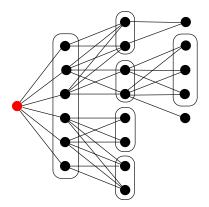
Distance hereditary graphs

A graph G is distance-hereditary if for every connected induced subgraph H of G, $\operatorname{dist}_{H}(u, v) = \operatorname{dist}_{G}(u, v)$ for $u, v \in V(H)$.

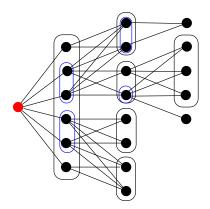
Theorem

The maximum number of minimal connected vertex covers of a distance-hereditary graph is at most $2 \cdot 3^{n/3}$, and these can be enumerated in time $O(1.4423^n)$.

Sketch of the proof



Sketch of the proof



Split graphs and cobipartite graphs

Split graphs and cobipartite graphs

Proposition

The number of minimal connected vertex covers of a split graph G is at most n, and these can be enumerated in time O(n).

Split graphs and cobipartite graphs

Proposition

The number of minimal connected vertex covers of a split graph G is at most n, and these can be enumerated in time O(n).

The number of minimal connected vertex covers of a cobipartite graph G is at most $n^2/4 + n$, and these can be enumerated in time $O(n^2)$.

Summary

Graph Class	Lower Bound	Upper Bound
general	$3^{(n-2)/3} 3^{(n-1)/3}$	$2^n O(1.8668^n)$
chordality ≤ 5	$3^{(n-2)/3} 3^{(n-1)/3}$	$2^n O(1.6181^n)$
chordal	$3^{(n-2)/3} 3^{(n-1)/3}$	$O(1.7159^n) \ 3^{n/3}$
strongly chordal	$3^{(n-2)/3} 3^{(n-1)/3}$	$3^{n/3} 3^{n/3}$
split	1.3195 ⁿ n	1.3803 ⁿ n
cobipartite	1.3195 ⁿ n ² /4	$1.3803^n n^2/4 + n$
interval	$3^{(n-2)/3} 3^{(n-1)/3}$	$3^{(n-2)/3} 3^{n/3}$
AT-free	$3^{(n-2)/3} 3^{(n-1)/3}$	$O^*(3^{n/3}) O(1.6181^n)$
distance-hereditary	$3^{(n-2)/3} 3^{(n-1)/3}$	$3^{n/3} \cdot n \ 2 \cdot 3^{n/3}$
cographs	$m \ 3^{(n-1)/3}$	$m \ 2 \cdot 3^{n/3}$

Minimal connected dominating sets and

minimal connected vertex covers

Golovach, Heggernes, Kratsch

Enumeration of Minimal Connected Vertex Covers

Open Questions : minimal connected vertex cover

• What is the maximum number of minimal connected vertex covers that a graph can have?

Open Questions : minimal connected vertex cover

- What is the maximum number of minimal connected vertex covers that a graph can have?
- We conjecture that it is more than $3^{n/3}$.

Open Questions : minimal connected vertex cover

- What is the maximum number of minimal connected vertex covers that a graph can have?
- We conjecture that it is more than $3^{n/3}$.
- How about graphs of bounded chordality?

Open questions : minimal connected dominating set

 Is it possible to enumerate all minimal connected dominating sets of a graph in time O(cⁿ) for c < 2?

Open questions : minimal connected dominating set

- Is it possible to enumerate all minimal connected dominating sets of a graph in time O(cⁿ) for c < 2?
- Is it possible to get a non-algorithmic upper bound for the number of minimal connected dominating sets?

Open questions : minimal connected dominating set

- Is it possible to enumerate all minimal connected dominating sets of a graph in time O(cⁿ) for c < 2?
- Is it possible to get a non-algorithmic upper bound for the number of minimal connected dominating sets?
- Is it possible to improve the lower bound $3^{(n-2)/3}$?

Open questions : minimal connected dominating set

- Is it possible to enumerate all minimal connected dominating sets of a graph in time O(cⁿ) for c < 2?
- Is it possible to get a non-algorithmic upper bound for the number of minimal connected dominating sets?
- Is it possible to improve the lower bound $3^{(n-2)/3}$?
- Is it possible to improve the upper bound $O(1.3803^n)$ for split graphs?

Thank You!

Golovach, Heggernes, Kratsch Enumeration of Minimal Connected Vertex Covers