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Dimension
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poset P linear extensions of P

of P is the minimum d such that there are d
linear extensions Lq,...,Lyg of P with P _ ﬂ L.
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Dimension: Geometric view

The dimension of a poset P is the least d such that P is
isomorphic to a subposet of R
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Why dimension?

A natural notion...
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A natural notion...

...with interesting connections, e.g.:

Incidence posets:
G P

G planar & dim(Pg) < 3
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Dimension: Hypergraph coloring problem

Dimension = least number of linear extensions reversing
all incomparable pairs (a,b)
b1 by b3
. Incomparable pairs
(al, bl), Ce ey (ak, bk) s.t. a; <p bz'_|_1
Vi (cyclically)

ay az ds

Lemma: Set I of incomparable pairs can be reversed
with one linear extension < [ has no alternating cycle

Hypergraph H:
e vertex set = { incomparable pairs }
e hyperedges <+ alternating cycles

o \(H) =dim(P)




Dimension: Hypergraph coloring problem

Dimension = least number of linear extensions reversing
all incomparable pairs (a,b)

b1 by b
. Incomparable pairs
(&1, bl), R (Clk, bk) s.t. a; <p bit1
Vi (cyclically)

ay az ds

Lemma: Set I of incomparable pairs can be reversed
with one linear extension < [ has no alternating cycle

Hypergraph H:
e vertex set = { incomparable pairs }
e hyperedges <+ alternating cycles
o \(H) =dim(P)
e cliques <+ standard examples




What is it going to be about?

“If a poset is nice then its dimension is small”

If cover graph of P is a forest then
dim(P) < 3




What is it going to be about?

“If a poset is nice then its dimension is small”

If cover graph of P is a forest then
dim(P) < 3

If cover graph of P has treewidth < 2 then
dim(P) < 1276




Kelly’s example




Kelly’s example
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posets with arbitrarily large dimension

(cover graphs have pathwidth 3)



Kelly’s example

posets with arbitrarily large dimension

(cover graphs have pathwidth 3)
. but height unbounded!




Planarity

If P has height h and cover graph of P is planar
then dim(P) < ¢y,




Unrolling
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Lemma: 3¢ s.t. dim(A4;, B;) > dim(P)/2 or



Unrolling

Lemma: 3¢ s.t. dim(A4;, B;) > dim(P)/2 or



Treewidth, genus, minors, ...

If P has height h and cover graph of P has
treewidth ¢ then dim(P) < ¢p, ¢
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Corollary using unrolling trick:
If P has height h and cover graph of P excludes an

apex graph A as minor then dim(P) < ¢p 4
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Treewidth, genus, minors, ...

If P has height 2 and cover graph of P excludes a
graph J as topological minor then dim(P) < ¢, 5

Uses:

If P has height h and cover graph of P has
maximum degree A then dim(P) < ¢j, A
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Bounded expansion

Class G has bounded expansion < Vr, all r-shallow
minors of G € G have average degree < f(r)

@ r-shallow minor: branch sets have

@ radius < r




Bounded expansion: Examples from graph drawing

k-planar graphs

Bounded book thickness

Bounded queue number




Bounded expansion

If P has height i and cover graph of P belongs to a
class G with bounded expansion then dim(P) < ¢, g




Beyond bounded expansion?

Sparsity
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Bounded degree
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Bounded degeneracy?

Not enough

Incidence posets:
G P

Cover graph is 2-degenerate

dim(Pk,) =loglogn + (£ + o(1)) loglog log n




Nowhere dense?

Class G is nowhere dense < Vr 4H s.t. H not
r-shallow minor of any G € G

Not enough

Adjacency posets:

v

G AP.
Lemma: dim(APg) > x(G)
G = {graphs G with A(G) < girth(G)}

e G nowhere dense, unbounded y

= dim(APg) for G € G unbounded
o VG € G, cover graph of APg alsoin G




Locally bounded treewidth?

Not enough

Adjacency posets:

v

G AP,
Lemma: dim(APg) > x(G)

G = {graphs G with A(G) < girth(G)}
e G has locally bounded treewidth, unbounded
= dim(APg) for G € G unbounded
o VG € G, cover graph of APg alsoin G




Updated picture
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Bounded expansion: Proof

Class G has bounded expansion < Vr, all r-shallow
minors of G € G have average degree < f(r)

Proof ingredient 1

Class G has low tree-depth colorings if 4f s.t. VG € G,
Vp, there is an f(p)-vertex coloring of GG s.t. union of
every ¢ color classes has tree-depth <7, Vi < p

Class G has bounded expansion < G has low
tree-depth colorings

In the proof: such a coloring for p = 2h — 1




Bounded expansion: Proof

Fix low tree-depth coloring ¢ of cover graph with
< f(2h — 1) colors

Proof ingredient 2
lterated unrolling

Bl BZ BS
/ 2
ag
Recall: there is a heavy block (A;, B;) or (A4;, B;11)
with dimension > dim(P)/2




Research directions

x improve the bounds: e.g. (recent result)
dim(P) < 192h, for planar P of height h
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