Sparsity and dimension

Gwenaël Joret Université Libre de Bruxelles

joint work with Piotr Micek and Veit Wiechert

Drawing posets

Drawing posets

non-planar diagram

planar cover graph

The dimension of a poset \mathbf{P} is the least d such that \mathbf{P} is isomorphic to a subposet of \mathbb{R}^d

Why dimension?

A natural notion...

Why dimension?

A natural notion...

...with interesting connections, e.g.:

Incidence posets:

Why dimension?

A natural notion...

...with interesting connections, e.g.:

Incidence posets:

Schnyder '89 G planar $\Leftrightarrow \dim(\mathbf{P}_G) \leqslant 3$

Standard examples have large dimension

$$\dim(S_n) = n$$

Standard examples have large dimension

$$\dim(S_n) = n$$

Dimension: Hypergraph coloring problem

Dimension = least number of linear extensions reversing all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs $(a_1, b_1), \ldots, (a_k, b_k)$ s.t. $a_i \leq_P b_{i+1}$ $\forall i$ (cyclically)

Lemma: Set I of incomparable pairs can be reversed with one linear extension $\Leftrightarrow I$ has no alternating cycle

Hypergraph \mathcal{H} :

- vertex set = { incomparable pairs }
- \bullet hyperedges \leftrightarrow alternating cycles
- $\chi(\mathcal{H}) = \dim(\mathbf{P})$

Dimension: Hypergraph coloring problem

Dimension = least number of linear extensions reversing all incomparable pairs (a, b)

Alternating cycle: Incomparable pairs $(a_1, b_1), \ldots, (a_k, b_k)$ s.t. $a_i \leq_P b_{i+1}$ $\forall i$ (cyclically)

Lemma: Set I of incomparable pairs can be reversed with one linear extension $\Leftrightarrow I$ has no alternating cycle

Hypergraph \mathcal{H} :

- vertex set = { incomparable pairs }
- hyperedges \leftrightarrow alternating cycles
- $\chi(\mathcal{H}) = \dim(\mathbf{P})$
- cliques \leftrightarrow standard examples

What is it going to be about?

"If a poset is nice then its dimension is small"

What is it going to be about?

"If a poset is nice then its dimension is small"

J., Micek, Trotter, Wang, Wiechert '14 If cover graph of P has treewidth ≤ 2 then $\dim(\mathbf{P}) \leq 1276$

Kelly's example

Kelly '81

Kelly's example

 $\overline{5}$

5

 $\overline{2}$ $\overline{3}$ $\overline{4}$

3

4

 $\mathbf{2}$

1

1

planar posets with arbitrarily large dimension (cover graphs have pathwidth 3)

Kelly's example

planar posets with arbitrarily large dimension (cover graphs have pathwidth 3) ... but height unbounded!

Planarity

Streib & Trotter '12

If P has height h and cover graph of P is planar then $\dim(\mathbf{P}) \leqslant c_h$

Unrolling

Lemma: $\exists i \text{ s.t. } \dim(A_i, B_i) \ge \dim(\mathbf{P})/2 \text{ or}$ $\dim(A_i, B_{i+1}) \ge \dim(\mathbf{P})/2$

Unrolling

Lemma: $\exists i \text{ s.t. } \dim(A_i, B_i) \ge \dim(\mathbf{P})/2 \text{ or}$ $\dim(A_i, B_{i+1}) \ge \dim(\mathbf{P})/2$

Treewidth, genus, minors, ...

J., Micek, Milans, Trotter, Walczak, Wang '13 If P has height h and cover graph of P has treewidth t then $\dim(\mathbf{P}) \leq c_{h,t}$

Corollary using unrolling trick: If \mathbf{P} has height h and cover graph of \mathbf{P} excludes an apex graph A as minor then $\dim(\mathbf{P}) \leq c_{h,A}$

Treewidth, genus, minors, ...

Walczak '14 If P has height h and cover graph of P excludes a graph J as topological minor then $\dim(\mathbf{P}) \leq c_{h,J}$

Uses: Füredi & Kahn '86 If P has height h and cover graph of P has maximum degree Δ then $\dim(\mathbf{P}) \leq c_{h,\Delta}$

Picture so far

Class \mathcal{G} has bounded expansion $\Leftrightarrow \forall r$, all *r*-shallow minors of $G \in \mathcal{G}$ have average degree $\leq f(r)$

Bounded expansion: Examples from graph drawing

k-planar graphs

Bounded book thickness

Bounded queue number

Bounded expansion

J., Micek, Wiechert '15

If **P** has height h and cover graph of **P** belongs to a class \mathcal{G} with bounded expansion then $\dim(\mathbf{P}) \leq c_{h,\mathcal{G}}$

Beyond bounded expansion?

Not enough

Incidence posets:

Cover graph is 2-degenerate

Füredi, Hajnal, Rödl, Trotter '92 $\dim(\mathbf{P}_{\mathbf{K}_{n}}) = \log \log n + (\frac{1}{2} + o(1)) \log \log \log n$

Nowhere dense?

Class \mathcal{G} is nowhere dense $\Leftrightarrow \forall r \; \exists H \text{ s.t. } H$ not r-shallow minor of any $G \in \mathcal{G}$

Not enough

Adjacency posets:

Lemma: $\dim(\mathbf{AP}_{\mathbf{G}}) \ge \chi(G)$

 $\begin{aligned} \mathcal{G} &= \{ \text{graphs } G \text{ with } \Delta(G) \leqslant girth(G) \} \\ \bullet \ \mathcal{G} \text{ nowhere dense, unbounded } \chi \\ & \Rightarrow \dim(\mathbf{AP_G}) \text{ for } G \in \mathcal{G} \text{ unbounded} \\ \bullet \ \forall G \in \mathcal{G}, \text{ cover graph of } \mathbf{AP_G} \text{ also in } \mathcal{G} \end{aligned}$

Locally bounded treewidth?

Not enough

Adjacency posets:

Lemma: $\dim(\mathbf{AP}_{\mathbf{G}}) \ge \chi(G)$

 $\begin{aligned} \mathcal{G} &= \{ \text{graphs } G \text{ with } \Delta(G) \leqslant \text{girth}(G) \} \\ \bullet \ \mathcal{G} \text{ has locally bounded treewidth, unbounded } \chi \\ & \Rightarrow \dim(\mathbf{AP_G}) \text{ for } G \in \mathcal{G} \text{ unbounded} \\ \bullet \ \forall G \in \mathcal{G}, \text{ cover graph of } \mathbf{AP_G} \text{ also in } \mathcal{G} \end{aligned}$

Updated picture

Class \mathcal{G} has bounded expansion $\Leftrightarrow \forall r$, all r-shallow minors of $G \in \mathcal{G}$ have average degree $\leqslant f(r)$

Proof ingredient 1

Class \mathcal{G} has low tree-depth colorings if $\exists f \text{ s.t. } \forall G \in \mathcal{G}$, $\forall p$, there is an f(p)-vertex coloring of G s.t. union of every i color classes has tree-depth $\leq i, \forall i \leq p$

Nešetřil & Ossona de Mendez '08

Class \mathcal{G} has bounded expansion $\Leftrightarrow \mathcal{G}$ has low tree-depth colorings

In the proof: such a coloring for p = 2h - 1

Bounded expansion: Proof

Fix low tree-depth coloring ϕ of cover graph with $\leqslant f(2h-1)$ colors

Proof ingredient 2 Iterated unrolling

 a_0

Recall: there is a heavy block (A_i, B_i) or (A_i, B_{i+1}) with dimension $\ge \dim(\mathbf{P})/2$

★ is dim $\in O(n^{\varepsilon}) \forall \varepsilon > 0$ for posets with cover graphs in a nowhere dense class? (Král')

* is dim $\in O(n^{\varepsilon}) \ \forall \varepsilon > 0$ for posets with cover graphs in a nowhere dense class? (Král')

Thank you!