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Completion Problems

Problem: Π Problem: Π-Completion
Input: Graphs G1, . . . ,Gl Input: Graphs G1, . . . ,Gl

Question: Do the graphs have a specified
property P ?

Question: Can we add some edges to one
or more of the graphs so that they will
have the property P ?
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Planar and Plane Graphs

For example:

G

Γ1 Γ2

Γ3
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What is FPT?

A parameterized problem is Fixed-Parameter Tractable (FPT) if there is
an algorithm that solves it in polynomial time with respect to the size of
the problem, disregarding the effect of the parameter.

Problem: Π
Input Size: n
Parameter: k
FPT Algorithm: f (k) · nO(1)
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The Subgraph & Minor Isomorphism Problems

Containment relation: ≤
Input: H and G
Question: Is H ≤ G?

NP-complete

General Planar

S.I. W[1]-hard
2O(k) · n

(Eppstein 1999)

M.I.
g (k) · n3 O(2O(k) · n + n2 · log n)

(Robertson & Seymour 1995) (Adler et al. 2010)

where n = |V (G )| and k = |V (H )|.
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The Plane Subgraph Completion Problem

Plane Subgraph Completion (PSC)
Input: A “host" plane graph Γ and a “pattern" connected plane graph ∆.
Parameter: k = |V (∆)|
Question: Can we add edges to Γ so that it contains a subgraph
topologically isomorphic to ∆ while preserving the embedding?

Γ ∆
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The Plane Top. Minor Completion Problem

Plane Topological Minor Completion (PTMC)
Input: A “host" plane graph Γ and a “pattern" connected plane graph ∆.
Parameter: k = |V (∆)|
Question: Can we add edges to Γ so that it contains a topological minor
topologically isomorphic to ∆ while preserving the embedding?

Γ ∆
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Our Results

If k := |V (∆)| and n := |V (Γ)|, we give:
an FPT algorithm for PSC that runs in time 2O(k log k) · n2 and

an FPT algorithm for PTMC that runs in time g (k) · n2.

Remark. In fact we can even solve more general problems: we can ask that
the pattern graph ∆ be given as a planar graph and check whether any of
its embeddings can be found in the host.
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Subdivided Radial Enhancement

Γ subdivided radial enhancement RΓ

Γ RΓ ∈ R(Γ)
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Some Observations

Let’s consider some facts about this construction.

Γ is disconnected ⇒ RΓ is connected (but not uniquely defined).

If Γ is connected ⇒ RΓ is 2-connected (and uniquely defined).

If Γ is 2-connected ⇒ RΓ is 3-connected.

Whitney’s Theorem (1932): Any 3-connected planar graph admits a unique
embedding on the plane (up to topological isomorphism).
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The PSC-Algorithm

Input:

Γ ∆
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The PSC-Algorithm

Step 1: Guess which edges of ∆ (red) are missing from Γ.
O(2k) time

Γ ∆
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The PSC-Algorithm

Step 2: Guess a supergraph ∆∗ of ∆ with extra (blue) vertices and edges
in some faces that represent vertices and edges of Γ inside the
corresponding faces. Then remove the red edges.

O(2k log k) time

Γ ∆∗
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The PSC-Algorithm

Step 3: Consider RΓ arbitrarily and “guess" an R∆∗ .
O(n + 2k) time

RΓ R∆∗
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The PSC-Algorithm

Step 4: Enhance RΓ and R∆∗ twice. Then Q(Γ) and Q(∆) are
3-connected and uniquely embeddable.

O(n + k) time

Step 5: Pick a vertex u of Γ and contract everything in Q(Γ) that is at a
distance greater than diam(Q(∆)) = O(k) from u. It is easy to prove that
the resulting graph Qu(Γ) has treewidth ≤ 3 · diam(Q(∆)) = O(k).

O(n) time
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The PSC-Algorithm
Step 6: Use a modified algorithm by Adler et al. (2011) to check whether the
planar graph Qu(Γ) contains the planar graph Q(∆) as a special
contraction.

≤ n steps

σ

σ

RΓ R∆∗
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Cylindrical Enhancement
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Cylindrical Enhancement
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Cylindrical Enhancement
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Cylindrical Enhancement
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Cylindrical Enhancement
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Cylindrical Enhancement

The resulting graph Γc has O(n) vertices.

∆ is a completion-topological-minor of Γ iff Q(∆) is a special
topological minor of Q(Γc), where the vertices of ∆ are associated
only to original vertices of Γ.

This relation can be expressed in MSOL.
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Rooted Disjoint Paths

To prove the previous claim, we use a result by Adler et al. (2011) which
states that the number of edges that need to be added in each face in
order to find k disjoint paths is bounded by f (k).

Using this result, we can solve the Planar Rooted Topological
Minor Completion Problem even for disconnected patterns and
therefore the Planar Disjoint Paths Completion Problem.
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Bounding the Tree-width: The Irrelevant-Edge Algorithm

We combine two known algorithms in order to find an irrelevant edge in the
graph (i.e., an edge whose removal results in an equivalent instance) in
time g (k) · n :

by Golovach,Kamiński,Maniatis,Thilikos (2015), we find a large wall with
some special properties in the graph and

by Kaminski,Thilikos (2012), we find an irrelevant edge in the wall.
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The PTMC-Algorithm

Step 1: Cylindrically enhance Γ into Γc .
O(n) time

Step 2: If tw(Γc) ≤ f (k), proceed to step 3. Otherwise, find an irrelevant
edge in Γc and remove it. Repeat until tw(Γc) ≤ f (k).

≤ g(k) · n2 time

Step 3: Enhance twice Γc − and ∆, resulting in Q(Γ) and Q(∆).
O(n) time

Step 4: Use Courcelle’s algorithm to check whether Q(∆) ≤∗ Q(Γ).
≤ h(k) · n time
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Side-Results / Future work

We can modify the PSC-algorithm to check if the pattern graph
appears as induced subgraph in the host.

Although the PTMC-algorithm works for minors as is, we can modify
it slightly to obtain a linear algorithm (w.r.t. n).

Try to drop the super-exponential factor 2O(k log k) of PSC to just
exponential. A better way to “guess" the blue parts in the pattern will
be needed.
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Thank you for your attention!
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