
Well-Structured Modulators: FPT

Algorithms and Kernels

Eduard Eiben Robert Ganian Stefan Szeider

Algorithms & Complexity Group
TU Wien

GROW 2015, Aussios, France,
October 13, 2015

Introduction

I General goal: identify conditions which allow solution of
NP-hard graph problems

I We want to get results for a wide range of problems

I Many problems can be captured by Monadic Second
Order (MSO) logic

MSO (MS1) logic

I used in Courcelle’s Theorem (no edge quantification)

I Quantify over vertices and vertex sets

I Atoms: edges between vertices, set inclusion, equality

I Example: ∃x∀y : edge(x , y) ∨ x = y .

Expressible problems

I 3-colorability, 3-clique cover, 3-partition into trees . . .

I ∃A,B ,C ∀x , y : partition and neighborhood conditions

Definition (MSO-MCϕ)

Instance: A graph G .
Question: Does G |= ϕ hold?

MSO (MS1) logic

I used in Courcelle’s Theorem (no edge quantification)

I Quantify over vertices and vertex sets

I Atoms: edges between vertices, set inclusion, equality

I Example: ∃x∀y : edge(x , y) ∨ x = y .

Expressible problems

I 3-colorability, 3-clique cover, 3-partition into trees . . .

I ∃A,B ,C ∀x , y : partition and neighborhood conditions

Definition (MSO-MCϕ)

Instance: A graph G .
Question: Does G |= ϕ hold?

MSO (MS1) logic

I used in Courcelle’s Theorem (no edge quantification)

I Quantify over vertices and vertex sets

I Atoms: edges between vertices, set inclusion, equality

I Example: ∃x∀y : edge(x , y) ∨ x = y .

Expressible problems

I 3-colorability, 3-clique cover, 3-partition into trees . . .

I ∃A,B ,C ∀x , y : partition and neighborhood conditions

Definition (MSO-MCϕ)

Instance: A graph G .
Question: Does G |= ϕ hold?

MSO (MS1) logic

I used in Courcelle’s Theorem (no edge quantification)

I Quantify over vertices and vertex sets

I Atoms: edges between vertices, set inclusion, equality

I Example: ∃x∀y : edge(x , y) ∨ x = y .

Expressible problems

I 3-colorability, 3-clique cover, 3-partition into trees . . .

I ∃A,B ,C ∀x , y : partition and neighborhood conditions

Definition (MSO-Optϕ)

Instance: A graph G and an integer r .
Question: Is there X ⊆ V (G) s.t. G |= ϕ(X) and |X | ≤ r?

Structural approach

I MSO model checking NP-hard in general
...but efficiently solvable by using the structure of inputs

I How to measure the “structure” of inputs? →
Parameterized Complexity

I Idea: use a parameter k to measure how
“well-structured” the graph is

I smaller k = more structured

I Develop algorithms which run well if the parameter is
small

I FPT algorithms: f (k) · nO(1) runtime
I Kernelization: see later

Structural approach

I MSO model checking NP-hard in general
...but efficiently solvable by using the structure of inputs

I How to measure the “structure” of inputs? →
Parameterized Complexity

I Idea: use a parameter k to measure how
“well-structured” the graph is

I smaller k = more structured

I Develop algorithms which run well if the parameter is
small

I FPT algorithms: f (k) · nO(1) runtime
I Kernelization: see later

Choice of parameter

I A good parameter should

I be small for as many inputs as possible, but
I allow the design of FPT algorithms for many

problems

I Two different approaches to parameter design:

I Decompositions
I Modulators

Decomposition approach

Parameters are associated with a decomposition which can be
used to solve problems.

I Treewidth

Theorem (Courcelle)

For an n-vertex graph G with treewidth k and an MSO
sentence ϕ, we can solve MSO-MCϕ in time f (k , ϕ) · n.

I treewidth large on dense graphs

Decomposition approach

I Clique-width

I more general than treewidth, low on some dense
graphs

I allows FPT-time MSO model checking if
decompositions are provided

I cannot compute decompositions

Decomposition approach
I Rank-width

Theorem (Ganian, Hliněný)

For an n-vertex graph G with rank-width k and an MSO
sentence ϕ, we can solve MSO-MCϕ in time f (k , ϕ) · n3.

I as general as clique-width—bounded from below and
above by a function of clique-width

I can compute decompositions [Hliněný, Oum]

Decomposition-based width measures

???

rank-width, clique-width

treewidth

linear rw / cw

pathwidth

tree-depth

Modulator approach

Parameters measure how “close” a graph is to a graph class H
Also very successful in related fields (backdoors in SAT,
CSP...)

I k is the number of vertices that need to be deleted to get
to H

I Vertex Cover and Feedback Vertex Set are special cases
of modulators

I allow the use of a vast range of work on specific graph
classes

Modulator approach

Parameters measure how “close” a graph is to a graph class H
Also very successful in related fields (backdoors in SAT,
CSP...)

I k is the number of vertices that need to be deleted to get
to H

I Vertex Cover and Feedback Vertex Set are special cases
of modulators

I allow the use of a vast range of work on specific graph
classes

This talk

Combine the 2 approaches to introduce a family of “hybrid”
parameters.
Goal for FPT algorithms:

I more general than rank-width and modulators

I computable in FPT time

I allow FPT-time MSO model checking

I under certain conditions...

This talk

Combine the 2 approaches to introduce a family of “hybrid”
parameters.
Goal for FPT algorithms:

I more general than rank-width and modulators

I computable in FPT time

I allow FPT-time MSO model checking

I under certain conditions...

This talk

Combine the 2 approaches to introduce a family of “hybrid”
parameters.
Goal for FPT algorithms:

I more general than rank-width and modulators

I computable in FPT time

I allow FPT-time MSO model checking

I under certain conditions...

Well-structured modulators
Basic idea: what if the graph has a large but well-structured
modulator to H?

K3-free

A graph with a 2-well-structured modulator to K3-free graphs

!!!Edges going into modulator must be controlled!!!

Well-structured modulators

We use splits to control edges going into the modulator.

A set of vertices X ⊆ V (G) is a split-module if it can be
partitioned into {A,B} such that A is completely connected to
neighborhood of X and B does not have neighbors outside X .

AB

Well-structured modulators

Definition

A set X of pairwise-disjoint split-modules of a graph G is
called a k-well-structured modulator to H if

I |X| ≤ k , and

I
⋃

Xi∈X Xi is a modulator to H, and

I rank-width of G [Xi] ≤ k for each Xi ∈ X.

K3-free

A graph with a 2-well-structured modulator to K3-free graphs

Well-structured modulators vs. other parameters

Well-structure number (wsnH): minimum k such that G has a
k-well-structured modulator to H

small rank-width
small modulator to H

small wsnH

Finding well-structured modulators

Theorem

Finding a k-well-structured modulator to any H
characterizable by a finite set of forbidden induced subgraphs
is FPT.

Examples for H: split graphs, P5-free graphs, graphs of
bounded degree, triangle-free graphs, claw-free graphs. . .

How this works:

I We use [Cunningham, 1982] and algorithm of [Gioan,
Paul, Tedder, Corneil, 2014] to partition vertices into
maximal split-modules of rank-width at most k .

I Reduce to d-hitting set.

Finding well-structured modulators

Theorem

Finding a k-well-structured modulator to any H
characterizable by a finite set of forbidden induced subgraphs
is FPT.

Examples for H: split graphs, P5-free graphs, graphs of
bounded degree, triangle-free graphs, claw-free graphs. . .

How this works:

I We use [Cunningham, 1982] and algorithm of [Gioan,
Paul, Tedder, Corneil, 2014] to partition vertices into
maximal split-modules of rank-width at most k .

I Reduce to d-hitting set.

Solving MSO-MCϕ

Theorem

For any MSO formula ϕ such that MSO-MCϕ is FPT
parameterized by modulator-size to H, MSO-MCϕ is FPT
parameterized by wsnH(G).

Blue part is a necessary condition.

Note that this captures not only the generality of
MSO-MCϕ, but also applies to many choices of H.

Solving MSO-MCϕ

Theorem

For any MSO formula ϕ such that MSO-MCϕ is FPT
parameterized by modulator-size to H, MSO-MCϕ is FPT
parameterized by wsnH(G).

Blue part is a necessary condition.

Note that this captures not only the generality of
MSO-MCϕ, but also applies to many choices of H.

MSO-MCϕ – Example

c-Coloring is FPT parameterized by the size of a modulator
to P5-free graphs. [Golovach, Paulusma, Song 2014 + Cai
2003]
Hence:

Corollary

c-Coloring is FPT parameterized by wsnP5-free.

Solving MSO-MCϕ – Proof

Idea: replace big split-modules by small ones

Now use necessary condition

What about MSO-Optϕ?

Surprisingly, there is a (provable) difference in difficulty
between MSO-Optϕ and MSO-MCϕ par. by wsn.

Theorem

There exists an MSO formula ϕ and graph class H (satisfying
same conditions as for previous theorem) such that
MSO-Optϕ is paraNP-hard parameterized by wsnH.

Solving other problems

Theorem

Minimum Vertex Cover and Maximum Clique are
FPT parameterized by wsnH iff they are polytime tractable on
H.

Weaker necessary condition – not sufficient for MSO-MCϕ!
Choices of H for Minimum Vertex Cover:

I (2K2,C4,C5)-free graphs (split graphs);

I P5-free graphs [Lokshtanov, Vatshelle, Villanger, 2014];

I fork-free graphs [Alekseev, 2004];

I (banner,T2,2,2)-free graphs and
(banner,K3,3-e, twin-house)-free graphs [Gerber,
Brandstadt, Lozin, 2001-2003].

Kernelization

Kernelization studies the efficient preprocessing and
compression of inputs.
Basic idea:

I A kernelization algorithm A takes an instance (I , p) and
outputs an instance (I ′, p′) (the kernel) such that:

I A runs in polynomial time,
I (I , p) ∈ P iff (I ′, p′) ∈ P , and
I |I ′|+ p′ ≤ f (p) for a (fixed) computable function f .

If f is a polynomial function, then we speak of polynomial
kernels – these are of particular interest.

Kernelization

Kernelization studies the efficient preprocessing and
compression of inputs.
Basic idea:

I A kernelization algorithm A takes an instance (I , p) and
outputs an instance (I ′, p′) (the kernel) such that:

I A runs in polynomial time,
I (I , p) ∈ P iff (I ′, p′) ∈ P , and
I |I ′|+ p′ ≤ f (p) for a (fixed) computable function f .

If f is a polynomial function, then we speak of polynomial
kernels – these are of particular interest.

Well-Structured Modulators for Kernelization

No polykernels when using rank-width.

!BUT! Modulators often give polykernels for various problems.

Can we exploit structure of modulators also for kernels?

(k, c)-Well-Structured Modulators

Definition

A set X of pairwise-disjoint split-modules of a graph G is
called a (k , c)-well-structured modulator (wsm) to H if

I |X| ≤ k , and

I
⋃

Xi∈X Xi is a modulator to H, and

I rank-width of G [Xi] ≤ c for each Xi ∈ X.

K3-free

A graph with a (2, 1)-wsm to K3-free graphs

Well-structured modulators vs. other parameters
Well-structure number (wsnH

c): minimum k such that G has a
(k , c)-well-structured modulator to H

rank-width ≤ c
small modulator to H

small wsnH
c

I [MFCS 2013]: special case of wsnH
c , where H is empty

and there are additional restrictions on split-modules.
I [Brno+Aachen, ESA 2013]: special case of wsnH

c , where
bags have size 1 and H is the class of constant treedepth.

WSMs for kernels
Differences compared to FPT algorithms:

I Finding WSMs for kernels

I need to approximate in polytime (can’t afford FPT
time)

I Using WSMs for kernels

I Need a replacement procedure which only takes
polytime (using constant rank-width)

Theorem

For every MSO sentence ϕ and every graph class H such that

1 MSO-MCϕ admits a polykernel par. by
modulator-size to H, and

2 a (k , c)-wsm to H can be (poly)-approximated in
polytime,

MSO-MCϕ admits a polykernel.

WSMs for kernels
Differences compared to FPT algorithms:

I Finding WSMs for kernels

I need to approximate in polytime (can’t afford FPT
time)

I Using WSMs for kernels

I Need a replacement procedure which only takes
polytime (using constant rank-width)

Theorem

For every MSO sentence ϕ and every graph class H such that

1 MSO-MCϕ admits a polykernel par. by
modulator-size to H, and

2 a (k , c)-wsm to H can be (poly)-approximated in
polytime,

MSO-MCϕ admits a polykernel.

WSMs for kernels
Differences compared to FPT algorithms:

I Finding WSMs for kernels

I need to approximate in polytime (can’t afford FPT
time)

I Using WSMs for kernels

I Need a replacement procedure which only takes
polytime (using constant rank-width)

Theorem

For every MSO sentence ϕ and every graph class H such that

1 MSO-MCϕ admits a polykernel par. by
modulator-size to H, and

2 a (k , c)-wsm to H can be (poly)-approximated in
polytime,

MSO-MCϕ admits a polykernel.

WSMs for kernels – applications

I If H is the class of empty graphs, we lift our previous
kernelization results of [MFCS 2013] and our main
theorem also holds for MSO-Optϕ.

I If H is the class of edgeless graphs, we lift vertex cover as
a parameter. On graphs of bounded expansion, every
MSO-MCϕ and MSO-Optϕ problem admits a
polykernel for wsnH

c .

I If H is the class of forests, we lift feedback vertex set as a
parameter. Every MSO-MCϕ problem admits a linear
kernel parameterized by wsnH

c on graphs of bounded
degree.

I If H is a class of bounded treedepth, we lift previous
results of [Aachen+Brno, ESA2013]. Every MSO-MCϕ

problem admits a linear kernel parameterized by wsnH
c on

graphs of bounded expansion.

WSMs for kernels – applications

I If H is the class of empty graphs, we lift our previous
kernelization results of [MFCS 2013] and our main
theorem also holds for MSO-Optϕ.

I If H is the class of edgeless graphs, we lift vertex cover as
a parameter. On graphs of bounded expansion, every
MSO-MCϕ and MSO-Optϕ problem admits a
polykernel for wsnH

c .

I If H is the class of forests, we lift feedback vertex set as a
parameter. Every MSO-MCϕ problem admits a linear
kernel parameterized by wsnH

c on graphs of bounded
degree.

I If H is a class of bounded treedepth, we lift previous
results of [Aachen+Brno, ESA2013]. Every MSO-MCϕ

problem admits a linear kernel parameterized by wsnH
c on

graphs of bounded expansion.

WSMs for kernels – applications

I If H is the class of empty graphs, we lift our previous
kernelization results of [MFCS 2013] and our main
theorem also holds for MSO-Optϕ.

I If H is the class of edgeless graphs, we lift vertex cover as
a parameter. On graphs of bounded expansion, every
MSO-MCϕ and MSO-Optϕ problem admits a
polykernel for wsnH

c .

I If H is the class of forests, we lift feedback vertex set as a
parameter. Every MSO-MCϕ problem admits a linear
kernel parameterized by wsnH

c on graphs of bounded
degree.

I If H is a class of bounded treedepth, we lift previous
results of [Aachen+Brno, ESA2013]. Every MSO-MCϕ

problem admits a linear kernel parameterized by wsnH
c on

graphs of bounded expansion.

WSMs for kernels – applications

I If H is the class of empty graphs, we lift our previous
kernelization results of [MFCS 2013] and our main
theorem also holds for MSO-Optϕ.

I If H is the class of edgeless graphs, we lift vertex cover as
a parameter. On graphs of bounded expansion, every
MSO-MCϕ and MSO-Optϕ problem admits a
polykernel for wsnH

c .

I If H is the class of forests, we lift feedback vertex set as a
parameter. Every MSO-MCϕ problem admits a linear
kernel parameterized by wsnH

c on graphs of bounded
degree.

I If H is a class of bounded treedepth, we lift previous
results of [Aachen+Brno, ESA2013]. Every MSO-MCϕ

problem admits a linear kernel parameterized by wsnH
c on

graphs of bounded expansion.

Final remarks

We introduced a family of “hybrid” parameters that:

I are more general than modulator-size (and rank-width)

I are approximable in polytime (computable in FPT time)

I allow kernelization (FPT algorithms) for MSO decision
problems

I under certain conditions

What else lies above rank-width?

Can we replace splits with less restrictive conditions?

Thank you for your attention!

