Well-Structured Modulators: FPT Algorithms and Kernels

Eduard Eiben Robert Ganian Stefan Szeider

Algorithms & Complexity Group TU Wien

GROW 2015, Aussios, France, October 13, 2015

Introduction

- General goal: identify conditions which allow solution of NP-hard graph problems
- We want to get results for a wide range of problems
- Many problems can be captured by Monadic Second Order (MSO) logic

- used in Courcelle's Theorem (no edge quantification)
- Quantify over vertices and vertex sets
- Atoms: edges between vertices, set inclusion, equality
- Example: $\exists x \forall y : edge(x, y) \lor x = y$.

- used in Courcelle's Theorem (no edge quantification)
- Quantify over vertices and vertex sets
- Atoms: edges between vertices, set inclusion, equality
- Example: $\exists x \forall y : edge(x, y) \lor x = y$.

Expressible problems

- 3-colorability, 3-clique cover, 3-partition into trees
- ▶ $\exists A, B, C \forall x, y : partition and neighborhood conditions$

- used in Courcelle's Theorem (no edge quantification)
- Quantify over vertices and vertex sets
- Atoms: edges between vertices, set inclusion, equality
- Example: $\exists x \forall y : edge(x, y) \lor x = y$.

Expressible problems

- 3-colorability, 3-clique cover, 3-partition into trees
- ▶ $\exists A, B, C \forall x, y : partition and neighborhood conditions$

Definition (MSO-MC $_{\varphi}$)

```
Instance: A graph G.
Question: Does G \models \varphi hold?
```

- used in Courcelle's Theorem (no edge quantification)
- Quantify over vertices and vertex sets
- Atoms: edges between vertices, set inclusion, equality
- Example: $\exists x \forall y : edge(x, y) \lor x = y$.

Expressible problems

- 3-colorability, 3-clique cover, 3-partition into trees
- ▶ $\exists A, B, C \forall x, y : partition and neighborhood conditions$

Definition (MSO-OPT $_{\varphi}$)

Instance: A graph G and an integer r. Question: Is there $X \subseteq V(G)$ s.t. $G \models \varphi(X)$ and $|X| \leq r$?

Structural approach

 MSO model checking NP-hard in general ...but efficiently solvable by using the structure of inputs

Structural approach

- MSO model checking NP-hard in general ...but efficiently solvable by using the structure of inputs
- ► How to measure the "structure" of inputs? → Parameterized Complexity
- Idea: use a parameter k to measure how "well-structured" the graph is
 - smaller k = more structured
- Develop algorithms which run well if the parameter is small
 - FPT algorithms: $f(k) \cdot n^{\mathcal{O}(1)}$ runtime
 - Kernelization: see later

Choice of parameter

- A good parameter should
 - ▶ be *small* for as many inputs as possible, but
 - allow the design of FPT algorithms for many problems
- Two different approaches to parameter design:
 - Decompositions
 - Modulators

Decomposition approach

Parameters are associated with a *decomposition* which can be used to solve problems.

Treewidth

Theorem (Courcelle)

For an n-vertex graph G with treewidth k and an MSO sentence φ , we can solve MSO-MC $_{\varphi}$ in time $f(k, \varphi) \cdot n$.

treewidth large on dense graphs

Decomposition approach

- Clique-width
 - more general than treewidth, low on some dense graphs
 - allows FPT-time MSO model checking if decompositions are provided
 - cannot compute decompositions

Decomposition approach

Rank-width

Theorem (Ganian, Hliněný)

For an n-vertex graph G with rank-width k and an MSO sentence φ , we can solve MSO-MC $_{\varphi}$ in time $f(k, \varphi) \cdot n^3$.

- as general as clique-width—bounded from below and above by a function of clique-width
- can compute decompositions [Hliněný, Oum]

Decomposition-based width measures

Modulator approach

Parameters measure how "close" a graph is to a graph class \mathcal{H} Also very successful in related fields (backdoors in SAT, CSP...)

Modulator approach

Parameters measure how "close" a graph is to a graph class \mathcal{H} Also very successful in related fields (backdoors in SAT, CSP...)

- ► k is the number of vertices that need to be deleted to get to H
- Vertex Cover and Feedback Vertex Set are special cases of modulators
- allow the use of a vast range of work on specific graph classes

Combine the 2 approaches to introduce a family of "hybrid" parameters.

Goal for FPT algorithms:

more general than rank-width and modulators

Combine the 2 approaches to introduce a family of "hybrid" parameters.

Goal for FPT algorithms:

- more general than rank-width and modulators
- computable in FPT time

Combine the 2 approaches to introduce a family of "hybrid" parameters.

Goal for FPT algorithms:

- more general than rank-width and modulators
- computable in FPT time
- allow FPT-time MSO model checking
 - under certain conditions...

Well-structured modulators

Basic idea: what if the graph has a large but well-structured modulator to \mathcal{H} ?

A graph with a 2-well-structured modulator to K_3 -free graphs !!!Edges going into modulator must be controlled!!!

Well-structured modulators

We use splits to control edges going into the modulator.

A set of vertices $X \subseteq V(G)$ is a split-module if it can be partitioned into $\{A, B\}$ such that A is completely connected to neighborhood of X and B does not have neighbors outside X.

Well-structured modulators

Definition

A set **X** of pairwise-disjoint split-modules of a graph G is called a k-well-structured modulator to \mathcal{H} if

- $|\mathbf{X}| \leq k$, and
- $\bigcup_{X_i \in \mathbf{X}} X_i$ is a modulator to \mathcal{H} , and
- ▶ rank-width of $G[X_i] \le k$ for each $X_i \in \mathbf{X}$.

A graph with a 2-well-structured modulator to K_3 -free graphs

Well-structured modulators vs. other parameters

Well-structure number $(wsn^{\mathcal{H}})$: minimum k such that G has a k-well-structured modulator to \mathcal{H}

Finding well-structured modulators

Theorem

Finding a k-well-structured modulator to any \mathcal{H} characterizable by a finite set of forbidden induced subgraphs is FPT.

Examples for \mathcal{H} : split graphs, P_5 -free graphs, graphs of bounded degree, triangle-free graphs, claw-free graphs...

Finding well-structured modulators

Theorem

Finding a k-well-structured modulator to any \mathcal{H} characterizable by a finite set of forbidden induced subgraphs is FPT.

Examples for \mathcal{H} : split graphs, P_5 -free graphs, graphs of bounded degree, triangle-free graphs, claw-free graphs...

How this works:

- We use [Cunningham, 1982] and algorithm of [Gioan, Paul, Tedder, Corneil, 2014] to partition vertices into maximal split-modules of rank-width at most k.
- Reduce to *d*-hitting set.

Solving $MSO-MC_{\varphi}$

Theorem

For any MSO formula φ such that $MSO-MC_{\varphi}$ is FPT parameterized by modulator-size to \mathcal{H} , $MSO-MC_{\varphi}$ is FPT parameterized by $wsn^{\mathcal{H}}(G)$.

Blue part is a necessary condition.

Solving $MSO-MC_{\varphi}$

Theorem

For any MSO formula φ such that $MSO-MC_{\varphi}$ is FPT parameterized by modulator-size to \mathcal{H} , $MSO-MC_{\varphi}$ is FPT parameterized by $wsn^{\mathcal{H}}(G)$.

Blue part is a necessary condition.

Note that this captures not only the generality of $MSO-MC_{\varphi}$, but also applies to many choices of \mathcal{H} .

c-COLORING is FPT parameterized by the size of a modulator to P_5 -free graphs. [Golovach, Paulusma, Song 2014 + Cai 2003] Hence:

Corollary

c-COLORING is FPT parameterized by wsn^{P_5-free} .

Solving $MSO-MC_{\varphi}$ – Proof

Idea: replace big split-modules by small ones

Now use necessary condition

Surprisingly, there is a (provable) difference in difficulty between $MSO-OPT_{\varphi}$ and $MSO-MC_{\varphi}$ par. by wsn.

Theorem

There exists an MSO formula φ and graph class \mathcal{H} (satisfying same conditions as for previous theorem) such that $MSO-OPT_{\varphi}$ is paraNP-hard parameterized by $wsn^{\mathcal{H}}$.

Solving other problems

Theorem

MINIMUM VERTEX COVER and MAXIMUM CLIQUE are FPT parameterized by $wsn^{\mathcal{H}}$ iff they are polytime tractable on \mathcal{H} .

Weaker necessary condition – not sufficient for $MSO-MC_{\varphi}$! Choices of \mathcal{H} for MINIMUM VERTEX COVER:

- ► (2K₂, C₄, C₅)-free graphs (split graphs);
- ▶ *P*₅-free graphs [Lokshtanov, Vatshelle, Villanger, 2014];
- fork-free graphs [Alekseev, 2004];
- ▶ (banner, T_{2,2,2})-free graphs and (banner, K_{3,3}-e, twin-house)-free graphs [Gerber, Brandstadt, Lozin, 2001-2003].

Kernelization

Kernelization studies the efficient preprocessing and compression of inputs. Basic idea:

- ► A kernelization algorithm A takes an instance (1, p) and outputs an instance (1', p') (the kernel) such that:
 - ▶ A runs in polynomial time,
 - ▶ $(I,p) \in P$ iff $(I',p') \in P$, and
 - ► $|I'| + p' \le f(p)$ for a (fixed) computable function f.

Kernelization

Kernelization studies the efficient preprocessing and compression of inputs. Basic idea:

- A kernelization algorithm A takes an instance (1, p) and outputs an instance (1', p') (the kernel) such that:
 - ▶ A runs in polynomial time,
 - $(I,p) \in P$ iff $(I',p') \in P$, and
 - ► $|I'| + p' \le f(p)$ for a (fixed) computable function f.

If f is a polynomial function, then we speak of *polynomial* kernels – these are of particular interest.

Well-Structured Modulators for Kernelization

No polykernels when using rank-width.

!BUT! Modulators often give polykernels for various problems.

Can we exploit structure of modulators also for kernels?

(k, c)-Well-Structured Modulators

Definition

A set **X** of pairwise-disjoint split-modules of a graph G is called a (k, c)-well-structured modulator (wsm) to \mathcal{H} if

- $|\mathbf{X}| \leq k$, and
- $\bigcup_{X_i \in \mathbf{X}} X_i$ is a modulator to \mathcal{H} , and
- rank-width of $G[X_i] \leq c$ for each $X_i \in \mathbf{X}$.

A graph with a (2, 1)-wsm to K_3 -free graphs

Well-structured modulators vs. other parameters Well-structure number $(wsn_c^{\mathcal{H}})$: minimum k such that G has a (k, c)-well-structured modulator to \mathcal{H}

- ▶ [MFCS 2013]: special case of wsn^{*H*}_c, where *H* is empty and there are additional restrictions on split-modules.
- ► [Brno+Aachen, ESA 2013]: special case of wsn^H_c, where bags have size 1 and H is the class of constant treedepth.

WSMs for kernels

Differences compared to FPT algorithms:

- Finding WSMs for kernels
 - need to approximate in polytime (can't afford FPT time)

WSMs for kernels

Differences compared to FPT algorithms:

- Finding WSMs for kernels
 - need to approximate in polytime (can't afford FPT time)
- Using WSMs for kernels
 - Need a replacement procedure which only takes polytime (using constant rank-width)

WSMs for kernels

Differences compared to FPT algorithms:

- Finding WSMs for kernels
 - need to approximate in polytime (can't afford FPT time)
- Using WSMs for kernels
 - Need a replacement procedure which only takes polytime (using constant rank-width)

Theorem

For every MSO sentence φ and every graph class ${\mathcal H}$ such that

- 1 $MSO-MC_{\varphi}$ admits a polykernel par. by modulator-size to \mathcal{H} , and
- 2 a (k, c)-wsm to H can be (poly)-approximated in polytime,

 $\mathrm{MSO-MC}_{\varphi}$ admits a polykernel.

If H is the class of empty graphs, we lift our previous kernelization results of [MFCS 2013] and our main theorem also holds for MSO-OPT_φ.

- If H is the class of empty graphs, we lift our previous kernelization results of [MFCS 2013] and our main theorem also holds for MSO-OPT_φ.
- If *H* is the class of edgeless graphs, we lift vertex cover as a parameter. On graphs of bounded expansion, every MSO-MC_φ and MSO-OPT_φ problem admits a polykernel for wsn^{*H*}_c.

- ► If H is the class of empty graphs, we lift our previous kernelization results of [MFCS 2013] and our main theorem also holds for MSO-OPT_φ.
- If H is the class of edgeless graphs, we lift vertex cover as a parameter. On graphs of bounded expansion, every MSO-MC_φ and MSO-OPT_φ problem admits a polykernel for wsn^H_c.
- If H is the class of forests, we lift feedback vertex set as a parameter. Every MSO-MC_φ problem admits a linear kernel parameterized by wsn^H_c on graphs of bounded degree.

- ► If H is the class of empty graphs, we lift our previous kernelization results of [MFCS 2013] and our main theorem also holds for MSO-OPT_φ.
- If H is the class of edgeless graphs, we lift vertex cover as a parameter. On graphs of bounded expansion, every MSO-MC_φ and MSO-OPT_φ problem admits a polykernel for wsn^H_c.
- If H is the class of forests, we lift feedback vertex set as a parameter. Every MSO-MC_φ problem admits a linear kernel parameterized by wsn^H_c on graphs of **bounded degree**.
- If H is a class of bounded treedepth, we lift previous results of [Aachen+Brno, ESA2013]. Every MSO-MC_φ problem admits a linear kernel parameterized by wsn^H_c on graphs of bounded expansion.

Final remarks

We introduced a family of "hybrid" parameters that:

- are more general than modulator-size (and rank-width)
- are approximable in polytime (computable in FPT time)
- allow kernelization (FPT algorithms) for MSO decision problems
 - under certain conditions

What else lies above rank-width?

Can we replace splits with less restrictive conditions?

Thank you for your attention!

