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The Problem

Problem: Minimum Shared Edges (MSE)

Input: A simple, undirected graph G = (V ,E ), s, t ∈ V , and two

integers p ∈ N and k ∈ N0.

Question: Are there p s-t paths in G that share at most k edges?

Till Fluschnik, TU Berlin 3 / 19



Introduction The Number of Paths Conclusion and Remarks References

The Problem

s

a b

c d e

t

G
Are there p = 3 s-t paths in G

that share at most k = 2 edges ?

s

a b

c d e

t s

c d e

t

G ′

s

a b

c d e

ts

a b

c d e

t s

a b

c d e

t

Till Fluschnik, TU Berlin 4 / 19



Introduction The Number of Paths Conclusion and Remarks References

The Problem

s

a b

c d e

t

G

Are there p = 3 s-t paths in G

that share at most k = 2 edges ?

s

a b

c d e

t s

c d e

t

G ′

s

a b

c d e

ts

a b

c d e

t s

a b

c d e

t

Till Fluschnik, TU Berlin 4 / 19



Introduction The Number of Paths Conclusion and Remarks References

The Problem

s

a b

c d e

t

G

Are there p = 3 s-t paths in G

that share at most k = 2 edges ?

s

a b

c d e

t

s

c d e

t

G ′

s

a b

c d e

ts

a b

c d e

t s

a b

c d e

t

Till Fluschnik, TU Berlin 4 / 19



Introduction The Number of Paths Conclusion and Remarks References

The Problem

s

a b

c d e

t

G

Are there p = 3 s-t paths in G

that share at most k = 2 edges ?

s

a b

c d e

t s

c d e

t

G ′

s

a b

c d e

ts

a b

c d e

t s

a b

c d e

t

Till Fluschnik, TU Berlin 4 / 19



Introduction The Number of Paths Conclusion and Remarks References

Related Work

Who Problem Results

Omran et al.

[JCOMB ’13]

MSE on directed

graphs

NP-hard; W [2]-hard wrt. k

Ye et al.

[FCS ’13]

MSE on undi-

rected graphs

solvable in pf (tw) · nO(1) time

Aoki et al.

[COCOA ’14]

Minimum Vul-

nerability on

undirected graphs

solvable in pf (tw) · nO(1) time;

MV(p) is FPT on chordal graphs
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Results

Theorem
Minimum Shared Edges is NP-complete, even on graphs of maximum

degree five.

Parameter Complexity Remark

k XP / W [2]-hard Reduction from Set Cover

tw XP / W [1]-hard Reduction from Multicolored Clique+

(p, k) FPT Branching Algorithm with running time in

(p − 1)k · O(|G |2)

(p, tw) FPT Ye et al. [FCS ’13],

Aoki et al. [COCOA ’14]

p FPT Details now +

+ to appear in Proc. FSTTCS 2015

Till Fluschnik, TU Berlin 6 / 19
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MSE(p) is FPT.

Theorem
Minimum Shared Edges is fixed-parameter tractable

with respect to the number p of paths.

Till Fluschnik, TU Berlin 8 / 19
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Strategy of Proving “MSE(p) is FPT”

G . . . . . . G ∗

Instance: (G , s, t, p, k)

- tw(G∗) ≤ h(p)

- 1-to-1 corresp. of all

minimal s-t cuts of size

≤ p − 1 of G and G∗.

. . . . . .

Treewidth reduction

technique

Instance: (G ∗, s, t, p, k)

- is solvable in FPT-time wrt. p

using a dynamic program.

- is yes-instance if and only if

(G , s, t, p, k) is yes-instance.
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The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let G be a graph, T ⊆ V (G ), and let ` be an integer. Let C be the set of

all vertices of G participating in a minimal s-t separator of size at most ` for

some s, t ∈ T .

For every fixed ` and |T |, there is a linear-time algorithm

that computes a graph G ∗ having the following properties:

(1) C ∪ T ⊆ V (G ∗)

(2) For every s, t ∈ T , a set L ⊆ V (G ∗) with |L| ≤ ` is a minimal s-t

separator of G ∗ if and only if L ⊆ C ∪ T and L is a minimal s-t

separator of G .

(3) The treewidth of G ∗ is at most h(`, |T |) for some function h.

(4) G ∗[C ∪ T ] is isomorphic to G [C ∪ T ].

Till Fluschnik, TU Berlin 10 / 19
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The Treewidth Reduction Technique
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Strategy of Proving “MSE(p) is FPT”

G . . .

H

. . .

H∗

G ∗

Instance: (G , s, t, p, k)

- tw(G∗) ≤ h(p)

- 1-to-1 corresp. of all

minimal s-t cuts of size

≤ p − 1 of G and G∗.

. . .

Subdivisions

. . .

Contractions

Treewidth reduction

technique with

T = {s, t} and

` = p − 1.

Instance: (G ∗, s, t, p, k)

- is solvable in FPT-time wrt. p

using a dynamic program.

- is yes-instance if and only if

(G , s, t, p, k) is yes-instance.

Instance: (G ∗, s, t, p, k)

- is solvable in FPT-time wrt. p

using a dynamic program.

Till Fluschnik, TU Berlin 12 / 19
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From G to G ∗ (with ` = p − 1 = 2)
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Conclusion and Remarks

• MSE is NP-hard even if maximum degree ∆ = 5.

• Ongoing work indicates that MSE remains NP-hard on planar graphs

with ∆ = 4. Open: ∆ = 3?

• MSE(k) is W [2]-hard, MSE(tw) is W [1]-hard, MSE(p) is FPT.

+ MSE(p) does not admit a polynomial problem kernel (unless

NP ⊆ coNP/poly).

- Our approach requires the combined use of the treewidth reduction

technique and dynamic programming.

⇒ Running times are of theoretical interest only.

Challenge: improve the running time.

• Further research: complexity of MSE on special planar graphs, e.g.

grids with holes.
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Thank you.
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