The Parameterized Complexity of Finding Paths with Shared Edges

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge

TU Berlin

October 14, 2015

VIP-Routing

The Problem

Problem: MINIMUM SHARED EDGES (MSE) **Input**: A simple, undirected graph G = (V, E), $s, t \in V$, and two integers $p \in \mathbb{N}$ and $k \in \mathbb{N}_0$. **Question**: Are there $p \ s-t$ paths in G that share at most k edges?

The Problem

Are there p = 3 s-t paths in G that share at most k = 2 edges ?

The Problem

The Problem

Till Fluschnik, TU Berlin

The Problem

Related Work

Who	Problem	Results
Omran et al.	MSE on directed	NP-hard; $W[2]$ -hard wrt. k
[JCOMB '13]	graphs	

Related Work

Who	Problem	Results
Omran et al. [JCOMB '13]	MSE on directed graphs	NP-hard; $W[2]$ -hard wrt. k
Ye et al. [FCS '13]	MSE on undirected graphs	solvable in $p^{f(tw)} \cdot n^{O(1)}$ time

Related Work

Who	Problem	Results
Omran et al. [JCOMB '13]	MSE on directed graphs	NP-hard; $W[2]$ -hard wrt. k
Ye et al. [FCS '13]	MSE on undirected graphs	solvable in $p^{f(tw)} \cdot n^{O(1)}$ time
Aoki et al. [COCOA '14]	MINIMUM VUL- NERABILITY on undirected graphs	solvable in $p^{f(tw)} \cdot n^{O(1)}$ time; MV(p) is FPT on chordal graphs

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SET COVER

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SET COVER
tw	XP / $W[1]$ -hard	Reduction from $\operatorname{Multicolored}$ CLIQUE $^+$

 $^+$ to appear in Proc. FSTTCS 2015

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Parameter	Complexity	Remark
k tw	XP / <i>W</i> [2]-hard XP / <i>W</i> [1]-hard	Reduction from SET COVER Reduction from MULTICOLORED CLIQUE ⁺
(<i>p</i> , <i>k</i>)	FPT	Branching Algorithm with running time in $(p-1)^k \cdot O(G ^2)$

⁺ to appear in Proc. FSTTCS 2015

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SET COVER
tw	XP / $W[1]$ -hard	Reduction from $\operatorname{Multicolored}$ CLIQUE $^+$
(p, k)	FPT	Branching Algorithm with running time in
		$(p-1)^k \cdot O(G ^2)$
(p, tw)	FPT	Ye et al. [FCS '13],
		Aoki et al. [COCOA '14]

⁺ to appear in Proc. FSTTCS 2015

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SET COVER
tw	XP / $W[1]$ -hard	Reduction from $\operatorname{Multicolored}$ CLIQUE $^+$
(p, k)	FPT	Branching Algorithm with running time in
		$(p-1)^k \cdot O(G ^2)$
(p, tw)	FPT	Ye et al. [FCS '13],
		Aoki et al. [COCOA '14]
р	FPT	Details now ⁺

⁺ to appear in Proc. FSTTCS 2015

Theorem

MINIMUM SHARED EDGES *is NP-complete, even on graphs of maximum degree five.*

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SET COVER
tw	XP / W[1]-hard	Reduction from $\operatorname{Multicolored}$ CLIQUE $^+$
(p,k)	FPT	Branching Algorithm with running time in
		$(p-1)^k \cdot O(G ^2)$
(p, tw)	FPT	Ye et al. [FCS '13],
		Aoki et al. [COCOA '14]
p	FPT	Details now ⁺

 $^{\rm +}\,$ to appear in Proc. FSTTCS 2015

MSE(p) is FPT.

Theorem

MINIMUM SHARED EDGES is fixed-parameter tractable with respect to the number p of paths.

Strategy of Proving "MSE(p) is FPT"

Instance: (G, s, t, p, k)

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$.

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some s, $t \in T$. For every fixed ℓ and |T|, there is a linear-time algorithm that computes a graph G^{*} having the following properties:

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some s, $t \in T$. For every fixed ℓ and |T|, there is a linear-time algorithm that computes a graph G^* having the following properties: (1) $C \cup T \subset V(G^*)$

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some s, $t \in T$. For every fixed ℓ and |T|, there is a linear-time algorithm that computes a graph G^{*} having the following properties:

(1) $C \cup T \subseteq V(G^*)$

(2) For every $s, t \in T$, a set $L \subseteq V(G^*)$ with $|L| \leq \ell$ is a minimal s-t separator of G^* if and only if $L \subseteq C \cup T$ and L is a minimal s-t separator of G.

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some s, $t \in T$. For every fixed ℓ and |T|, there is a linear-time algorithm that computes a graph G^{*} having the following properties:

- (1) $C \cup T \subseteq V(G^*)$
- (2) For every s, t ∈ T, a set L ⊆ V(G*) with |L| ≤ ℓ is a minimal s-t separator of G* if and only if L ⊆ C ∪ T and L is a minimal s-t separator of G.
- (3) The treewidth of G^* is at most $h(\ell, |T|)$ for some function h.

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some s, $t \in T$. For every fixed ℓ and |T|, there is a linear-time algorithm that computes a graph G^{*} having the following properties:

- (1) $C \cup T \subseteq V(G^*)$
- (2) For every s, t ∈ T, a set L ⊆ V(G*) with |L| ≤ ℓ is a minimal s-t separator of G* if and only if L ⊆ C ∪ T and L is a minimal s-t separator of G.
- (3) The treewidth of G* is at most h(ℓ, |T|) for some function h.
 (4) G*[C ∪ T] is isomorphic to G[C ∪ T].

The Treewidth Reduction Technique

The Treewidth Reduction Technique

The Treewidth Reduction Technique

The Treewidth Reduction Technique

The Treewidth Reduction Technique

The Treewidth Reduction Technique

Till Fluschnik, TU Berlin

Till Fluschnik, TU Berlin

Introduction

The Number of Paths

Conclusion and Remarks

References

• MSE is NP-hard even if maximum degree $\Delta = 5$.

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
- MSE(k) is W[2]-hard, MSE(tw) is W[1]-hard, MSE(p) is FPT.

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
- MSE(k) is W[2]-hard, MSE(tw) is W[1]-hard, MSE(p) is FPT.
- + MSE(p) does not admit a polynomial problem kernel (unless NP \subseteq coNP/poly).

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
- MSE(k) is W[2]-hard, MSE(tw) is W[1]-hard, MSE(p) is FPT.
- + MSE(p) does not admit a polynomial problem kernel (unless NP \subseteq coNP/poly).
 - Our approach requires the combined use of the treewidth reduction technique and dynamic programming.

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
- MSE(k) is W[2]-hard, MSE(tw) is W[1]-hard, MSE(p) is FPT.
- + MSE(p) does not admit a polynomial problem kernel (unless NP \subseteq coNP/poly).
 - Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
- ⇒ Running times are of theoretical interest only.
 Challenge: improve the running time.

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
- MSE(k) is W[2]-hard, MSE(tw) is W[1]-hard, MSE(p) is FPT.
- + MSE(p) does not admit a polynomial problem kernel (unless NP \subseteq coNP/poly).
 - Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
- ⇒ Running times are of theoretical interest only.
 Challenge: improve the running time.
 - Further research: complexity of MSE on special planar graphs, e.g. grids with holes.

Thank you.

- Yusuke Aoki, Bjarni V. Halldórsson, Magnús M. Halldórsson, Takehiro Ito, Christian Konrad, and Xiao Zhou.
 The minimum vulnerability problem on graphs.
 In Zhang et al. [ZWXD14], pages 299–313.
- Dániel Marx, Barry O'Sullivan, and Igor Razgon.
 Finding small separators in linear time via treewidth reduction.
 ACM Transactions on Algorithms, 9(4):30, 2013.
- Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh.
 Finding paths with minimum shared edges.
 Journal of Combinatorial Optimization, 26(4):709–722, 2013.
- Z.Q. Ye, Y.M. Li, H.Q. Lu, and X. Zhou.

Finding paths with minimum shared edges in graphs with bounded treewidths.

In Proc. Frontiers of Computer Science (FCS) 2013, pages 40-46, 2013.

 Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors. Combinatorial Optimization and Applications - 8th International Conference, COCOA 2014, Wailea, Maui, HI, USA, December 19-21, 2014, Proceedings, volume 8881 of Lecture Notes in Computer Science. Springer, 2014.