The Parameterized Complexity of Finding Paths with Shared Edges

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge

TU Berlin

October 14, 2015

VIP-Routing

VIP-Routing

VIP-Routing

The Problem

Problem: Minimum Shared Edges (MSE)
Input: A simple, undirected graph $G=(V, E), s, t \in V$, and two integers $p \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$.
Question: Are there p s-t paths in G that share at most k edges?

The Problem

Are there $p=3 s-t$ paths in G
that share at most $k=2$ edges ?

The Problem

The Problem

The Problem

Related Work

Who	Problem	Results
Omran et al. MSE on directed $[J C O M B ~ ' 13]$ graphs		

Related Work

Who	Problem	Results
Omran et al.	MSE on directed [JCOMB '13]	NP-hard; W[2]-hard wrt. k
Ye et al.	MSE on undi-	solvable in $p^{f(\mathrm{tw})} \cdot n^{O(1)}$ time
$[$ FCS '13]	rected graphs	

Related Work

Who	Problem	Results
Omran et al. [JCOMB '13]	MSE on directed graphs	NP-hard; W[2]-hard wrt. k
Ye et al. [FCS '13]	MSE on undirected graphs	solvable in $p^{f(\mathrm{tw})} \cdot n^{O(1)}$ time
Aoki et al. [COCOA '14]	Minimum VulNERABILITY on undirected graphs	solvable in $p^{f(\mathrm{tw})} \cdot n^{O(1)}$ time; $\mathrm{MV}(p)$ is FPT on chordal graphs

Results

Theorem
Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SET COVER

Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from SEt Cover
tw	XP / W[1]-hard	Reduction from Multicolored Clique ${ }^{+}$

Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Parameter Complexity Remark

$k \quad$ XP / W[2]-hard Reduction from Set Cover
tw $\quad \mathrm{XP} / W[1]$-hard
$(p, k) \quad$ FPT

Reduction from Multicolored Clique ${ }^{+}$ Branching Algorithm with running time in $(p-1)^{k} \cdot O\left(|G|^{2}\right)$

Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Parameter	Complexity	Remark
k	XP $/ W[2]$-hard	Reduction from Set Cover
tw	XP / W[1]-hard	Reduction from Multicolored Clique +
(p, k)	FPT	Branching Algorithm with running time in $(p$, tw $)$
	FPT	$(p-1)^{k} \cdot O\left(\|G\|^{2}\right)$
		Ye et al. [FCS '13],
		Aoki et al. [COCOA '14]

Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Parameter	Complexity	Remark
k	XP / W $/ 2]$-hard	Reduction from Set Cover
tw	XP / W [1]-hard	Reduction from Multicolored Clique ${ }^{+}$
(p, k)	FPT	Branching Algorithm with running time in $(p-1)^{k} \cdot O\left(\|G\|^{2}\right)$
(p, tw)	FPT	Ye et al. [FCS '13],
		Aoki et al. [COCOA '14]
p	FPT	Details now ${ }^{+}$

+ to appear in Proc. FSTTCS 2015

Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

Parameter	Complexity	Remark
k	XP / W[2]-hard	Reduction from Set Cover
tw	XP / W[1]-hard	Reduction from Multicolored Clique ${ }^{+}$
(p, k)	FPT	Branching Algorithm with running time in $(p-1)^{k} \cdot O\left(\|G\|^{2}\right)$
(p, tw)	FPT	Ye et al. [FCS '13],
		Aoki et al. [COCOA '14]
p	FPT	Details now ${ }^{+}$

+ to appear in Proc. FSTTCS 2015

$\operatorname{MSE}(p)$ is FPT.

Theorem
Minimum Shared Edges is fixed-parameter tractable with respect to the number p of paths.

Strategy of Proving "MSE (p) is FPT"

Instance: (G, s, t, p, k)

Strategy of Proving "MSE (p) is FPT"

Strategy of Proving "MSE (p) is FPT"

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])
Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$.

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])
Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^{*} having the following properties:

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])
Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^{*} having the following properties: (1) $C \cup T \subseteq V\left(G^{*}\right)$

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^{*} having the following properties:
(1) $C \cup T \subseteq V\left(G^{*}\right)$
(2) For every $s, t \in T$, a set $L \subseteq V\left(G^{*}\right)$ with $|L| \leq \ell$ is a minimal s-t separator of G^{*} if and only if $L \subseteq C \cup T$ and L is a minimal $s-t$ separator of G.

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^{*} having the following properties:
(1) $C \cup T \subseteq V\left(G^{*}\right)$
(2) For every $s, t \in T$, a set $L \subseteq V\left(G^{*}\right)$ with $|L| \leq \ell$ is a minimal $s-t$ separator of G^{*} if and only if $L \subseteq C \cup T$ and L is a minimal $s-t$ separator of G.
(3) The treewidth of G^{*} is at most $h(\ell,|T|)$ for some function h.

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG '13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^{*} having the following properties:
(1) $C \cup T \subseteq V\left(G^{*}\right)$
(2) For every $s, t \in T$, a set $L \subseteq V\left(G^{*}\right)$ with $|L| \leq \ell$ is a minimal $s-t$ separator of G^{*} if and only if $L \subseteq C \cup T$ and L is a minimal $s-t$ separator of G.
(3) The treewidth of G^{*} is at most $h(\ell,|T|)$ for some function h.
(4) $G^{*}[C \cup T]$ is isomorphic to $G[C \cup T]$.

The Treewidth Reduction Technique

$$
T=\{s, t\}, \ell=2
$$

The Treewidth Reduction Technique

$$
T=\{s, t\}, \ell=2
$$

The Treewidth Reduction Technique

$$
T=\{s, t\}, \ell=2
$$

The Treewidth Reduction Technique

$$
T=\{s, t\}, \ell=2
$$

The Treewidth Reduction Technique

$$
T=\{s, t\}, \ell=2
$$

The Treewidth Reduction Technique

$$
T=\{s, t\}, \ell=2
$$

Strategy of Proving "MSE (p) is FPT"

Strategy of Proving "MSE (p) is FPT"

Strategy of Proving " $\mathrm{MSE}(p)$ is FPT"

Strategy of Proving " $\mathrm{MSE}(p)$ is FPT"

From G to G^{*} (with $\ell=p-1=2$)

From G to G^{*} (with $\ell=p-1=2$)

From G to G^{*} (with $\ell=p-1=2$)

From G to G^{*} (with $\ell=p-1=2$)

G^{*}

Strategy of Proving " $\mathrm{MSE}(p)$ is FPT"

Strategy of Proving " $\mathrm{MSE}(p)$ is FPT"

$-\operatorname{tw}\left(G^{*}\right) \leq h(p)$

- 1-to-1 corresp. of all
minimal $s-t$ cuts of size
$\leq p-1$ of G and G^{*}.

Contractions

Strategy of Proving "MSE (p) is FPT"

$-\operatorname{tw}\left(G^{*}\right) \leq h(p)$

- 1-to-1 corresp. of all
minimal $s-t$ cuts of size
$\leq p-1$ of G and G^{*}.

Contractions

Instance: (G, s, t, p, k)	Treewidth reduction technique with	- 1-to-1 corresp. of all minimal $s-t$ cuts of size $\leq p-1$ of G and G^{*}.
ubdivisions	$\begin{aligned} & T=\{s, t\} \text { and } \\ & \ell=p-1 . \end{aligned}$	Contractions

Instance: $\left(G^{*}, s, t, p, k\right)$

- is solvable in FPT-time wrt. p using a dynamic program.

Strategy of Proving "MSE (p) is FPT"

$-\operatorname{tw}\left(G^{*}\right) \leq h(p)$

- 1-to-1 corresp. of all
minimal $s-t$ cuts of size
$\leq p-1$ of G and G^{*}.

Contractions

Instance: $\left(G^{*}, s, t, p, k\right)$

- is solvable in FPT-time wrt. p using a dynamic program.
- is yes-instance if and only if
(G, s, t, p, k) is yes-instance.

Strategy of Proving "MSE (p) is FPT"

Conclusion and Remarks

References

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta=4$. Open: $\Delta=3$?

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta=4$. Open: $\Delta=3$?
- $\operatorname{MSE}(k)$ is $W[2]$-hard, $\operatorname{MSE}(\mathrm{tw})$ is $W[1]$-hard, $\operatorname{MSE}(p)$ is FPT.

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta=4$. Open: $\Delta=3$?
- $\operatorname{MSE}(k)$ is $W[2]$-hard, $\operatorname{MSE}(\mathrm{tw})$ is $W[1]$-hard, $\operatorname{MSE}(p)$ is FPT.
$+\operatorname{MSE}(p)$ does not admit a polynomial problem kernel (unless $N P \subseteq$ coNP/poly).

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta=4$. Open: $\Delta=3$?
- $\operatorname{MSE}(k)$ is $W[2]$-hard, $\operatorname{MSE}(\mathrm{tw})$ is $W[1]$-hard, $\operatorname{MSE}(p)$ is FPT.
$+\operatorname{MSE}(p)$ does not admit a polynomial problem kernel (unless $N P \subseteq$ coNP/poly).
- Our approach requires the combined use of the treewidth reduction technique and dynamic programming.

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta=4$. Open: $\Delta=3$?
- $\operatorname{MSE}(k)$ is $W[2]$-hard, $\operatorname{MSE}(\mathrm{tw})$ is $W[1]$-hard, $\operatorname{MSE}(p)$ is FPT.
$+\operatorname{MSE}(p)$ does not admit a polynomial problem kernel (unless $N P \subseteq$ coNP/poly).
- Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
\Rightarrow Running times are of theoretical interest only. Challenge: improve the running time.

Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta=5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta=4$. Open: $\Delta=3$?
- $\operatorname{MSE}(k)$ is $W[2]$-hard, $\operatorname{MSE}(\mathrm{tw})$ is $W[1]$-hard, $\operatorname{MSE}(p)$ is FPT.
$+\operatorname{MSE}(p)$ does not admit a polynomial problem kernel (unless $N P \subseteq$ coNP/poly).
- Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
\Rightarrow Running times are of theoretical interest only. Challenge: improve the running time.
- Further research: complexity of MSE on special planar graphs, e.g. grids with holes.

Thank you.

圊 Yusuke Aoki, Bjarni V. Halldórsson, Magnús M. Halldórsson, Takehiro Ito, Christian Konrad, and Xiao Zhou.
The minimum vulnerability problem on graphs.
In Zhang et al. [ZWXD14], pages 299-313.
© Dániel Marx, Barry O'Sullivan, and Igor Razgon.
Finding small separators in linear time via treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013.

回 Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh.
Finding paths with minimum shared edges.
Journal of Combinatorial Optimization, 26(4):709-722, 2013.
Z.Q. Ye, Y.M. Li, H.Q. Lu, and X. Zhou.

Finding paths with minimum shared edges in graphs with bounded treewidths.
In Proc. Frontiers of Computer Science (FCS) 2013, pages 40-46, 2013.

围 Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors. Combinatorial Optimization and Applications - 8th International Conference, COCOA 2014, Wailea, Maui, HI, USA, December 19-21, 2014, Proceedings, volume 8881 of Lecture Notes in Computer Science. Springer, 2014.

