A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface

Vincent Cohen-Addad ${ }^{1}$ Arnaud de Mesmay ${ }^{2}$

${ }^{1}$ École normale supérieure, Paris, France
${ }^{2}$ IST Austria, Klosterneuburg, Austria

From Donuts to Crêpes

Surfaces and embedded graphs

- A surface is a topological space which looks locally like the plane.

- Connected, compact surfaces without boundary are classified by their genus g .
- An embedding of a graph G on a surface S is a drawing of G on S with no crossings and every face is a topological disk.

We denote such an embedding by (S, G), we use g for the genus of S and n for the number of vertices of G.

Cut graph

A cut graph of (S, G) is a subgraph C of G such that cutting S along C gives a topological disk.

This talk is about the following problem.

Optimal cut graph

Input: Graph G embedded on S.
Output: Shortest possible cut graph $C_{O P T}$ of (S, G).

Why should we care about (optimal) cut graphs?

- Cookie-cutter algorithm for (almost) any problem for surface-embedded graphs:
(1) Cut the surface into the plane.
(2) Solve the planar case.
(3) Recover the solution.
- More practical problems, for example texture mapping.

In all cases:

- We need efficient algorithms to do the cutting.
- The quality of the solution depends on the length of the cut graph.

Previous work on cut graphs

Optimal cut graph

Input: Graph G embedded on S.
Output: Shortest possible cut graph $C_{O P T}$ of (S, G).
Introduced by [Erickson, Har-Peled '04].

- NP-hard by reduction from Steiner tree.
- Exact algorithm in $n^{O(g)}$.
- Polynomial algorithm to compute a $O\left(\log ^{2} g\right)$ approximation.

Main question: Fixed parameter (in)tractability, e.g. exact algorithm in time $f(g)$ poly (n) ?
Our result is a FPT approximation scheme:

Theorem

Let G be a (edge-weighted) graph embedded on a surface S of genus g. For any $\varepsilon>0$, we can compute a $(1+\varepsilon)$-approximation of the shortest cut graph of G in time $f(\varepsilon, g) n^{3}$ for some function f.

Section 1

Overview of the techniques

Our techniques

- Similarity with connectivity problems like TSP, Steiner Tree, Steiner Forest, . . .
- For all of these, there was a flurry of new results using the spanner framework of [Klein '05].

A spanner is a subgraph

- of total length $O(f(g, \varepsilon) O P T)$.
- containing a $(1+\varepsilon)$-approximation of the optimal cut graph.

For many problems, such a spanner can be efficiently computed.

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) \rightarrow We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) \rightarrow We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) \rightarrow We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) \rightarrow We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) \rightarrow We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(3) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) \rightarrow We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) \rightarrow We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(3) We remove excessive edges to obtain a cut graph C

Our techniques 2

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
© \rightarrow We remove excessive edges to obtain a cut graph C

Our techniques 3

(1) We compute a spanner $G_{\text {span }}$ for the problem.
(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges.

Our techniques 3

(1) We compute a spanner $G_{\text {span }}$ for the problem.

Brick decompositions of [Borradaile, Klein, Mathieu '09], [Borradaile, Demaine, Tazari '14]

(2) We contract a small set of edges of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of reasonable treewidth.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(3) We remove excessive edges.

Our techniques 3

(1) We compute a spanner $G_{\text {span }}$ for the problem.

> Brick decompositions of [Borradaile, Klein, Mathieu '09], [Borradaile, Demaine, Tazari '14]
(2) We contract a set of edges of length $\varepsilon O P T$ of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of treewidth $O(f(g, \varepsilon))$.
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges.

Our techniques 3

(1) We compute a spanner $G_{\text {span }}$ for the problem.

> Brick decompositions of [Borradaile, Klein, Mathieu '09], [Borradaile, Demaine, Tazari '14]
(2) We contract a set of edges of length $\varepsilon O P T$ of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of treewidth $O(f(g, \varepsilon))$.

Results of contraction-decomposition of [Demaine, Hajiaghayi, Mohar '10], [Demaine, Hajiaghayi, Kawarabayashi '11].
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges.

Our techniques 3

(1) We compute a spanner $G_{\text {span }}$ for the problem.

> Brick decompositions of [Borradaile, Klein, Mathieu '09], [Borradaile, Demaine, Tazari '14]
(2) We contract a set of edges of length $\varepsilon O P T$ of $G_{\text {span }}$ to obtain a graph $G_{t w}$ of treewidth $O(f(g, \varepsilon))$.

Results of contraction-decomposition of [Demaine, Hajiaghayi, Mohar '10], [Demaine, Hajiaghayi, Kawarabayashi '11].
(3) We use dynamic programming on $G_{t w}$ to compute its optimal cut graph $C_{t w}$.

Surface-cut decompositions of [Rué, Sau and Thilikos '14]
(9) We uncontract the previous edges to recover a subgraph C^{\prime} of G.
(5) We remove excessive edges.

Section 2

A spanner for the optimal cut-graph

A spanner is a subgraph

- of total length $O(f(g, \varepsilon) O P T)$.
- containing a $(1+\varepsilon)$-approximation of the optimal cut graph.

Step 1. Computing a spanner

- We start with a $O\left(\log ^{2} g\right)$ approximation of $C_{O P T}$, and cut along it.

Step 1. Computing a spanner

- Cort is now a forest in a disk D of boundary length $|\partial D|=O\left(\log ^{2} g\right) O P T$.

Step 1. Computing a spanner

- We decompose the disk into bricks of length $f(\varepsilon)|\partial D|=f(\varepsilon, g) O P T$.

Step 1. Computing a spanner

- We put regularly spaced portals on the boundaries of the bricks.

Step 1. Computing a spanner

- We prove a structure theorem showing that 'pushing' CoPT so that it goes through the portals does not make it much longer.

Step 1. Computing a spanner

- We prove a structure theorem showing that 'pushing' COPT so that it goes through the portals does not make it much longer.

- The spanner $G_{\text {span }}$ is obtained by computing Steiner trees for every possible subset of portals in every brick.
- Proofs similar to [Borradaile, Klein, Mathieu '09],[Borradaile, Demaine, Tazari '14]

Section 3

Computing an optimal cut graph in bounded tree-width

Step 3. Dynamic programming and bounded tree-width

- Tree decompositions are commonly used as a basis for dynamic programming .

- For this problem they lack a topological structure.
- Instead we will rely on a variant of branch decompositions called Surface-cut decompositions [Rué, Sau, Thilikos '14].

Step 3. Surface-cut decompositions

Branch decomposition:

Tree T such that every edge of the tree partitions the edges of G into subgraphs G_{1} and G_{2} such that $\left|G_{1} \cap G_{2}\right|$ is not too big.

Step 3. Surface-cut decompositions

Surface-cut decomposition:

Tree T such that every edge of the tree partitions the edges of G and the surface S into subgraphs G_{1} and G_{2} and connected subsurfaces S_{1} and S_{2} such that $G_{i} \subseteq S_{i}$ and $S_{1} \cap S_{2}$ is not too complicated.

- With a surface-cut decomposition, it is easy to design a dynamic programming algorithm to compute an optimal cut graph.

Step 3. Computing a surface-cut decomposition

Theorem (Rué, Sau, Thilikos '14)

Given a graph G polyhedrally embedded ${ }^{a}$ on a surface of genus g and branch-width k, one can compute a surface-cut decomposition of G of width $O(g+k)$ in time $2^{O(k)} n^{3}$.
> ${ }^{a} G$ is polyhedrally embedded if G is 3 -connected and the smallest length of a non-contractible noose is at least 3 or if G is a clique and it has at most 3 vertices

We provide two ways to circumvent the polyhedrality hypothesis:

- We provide another algorithm which does not need it, relying on a lemma of Inkmann.
- We provide a construction to make a graph embedding polyhedral while controlling its branch-width.

Perspectives

- Fixed parameter (in)tractability of this problem?
- What is the best approximation ratio for polynomial (in n and g).

Perspectives

- Fixed parameter (in)tractability of this problem?
- What is the best approximation ratio for polynomial (in n and g).

Thank you!

