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From Donuts to Crêpes
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From Bretzels to Crêpes?
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Surfaces and embedded graphs

A surface is a topological space which looks locally like the
plane.

Connected, compact surfaces without boundary are classified
by their genus g.
An embedding of a graph G on a surface S is a drawing of G
on S with no crossings and every face is a topological disk.

We denote such an embedding by (S ,G ), we use g for the genus of
S and n for the number of vertices of G .
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Cut graph

A cut graph of (S ,G ) is a subgraph C of G such that cutting S
along C gives a topological disk.

This talk is about the following problem.

Optimal cut graph
Input: Graph G embedded on S .
Output: Shortest possible cut graph COPT of (S ,G ).
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Why should we care about (optimal) cut graphs?

Cookie-cutter algorithm for (almost) any problem for
surface-embedded graphs:

1 Cut the surface into the plane.
2 Solve the planar case.
3 Recover the solution.

More practical problems, for example texture mapping.

In all cases:

We need efficient algorithms to do the cutting.
The quality of the solution depends on the length of the cut
graph.
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Previous work on cut graphs

Optimal cut graph
Input: Graph G embedded on S .
Output: Shortest possible cut graph COPT of (S ,G ).

Introduced by [Erickson, Har-Peled ’04].

NP-hard by reduction from Steiner tree.
Exact algorithm in nO(g).
Polynomial algorithm to compute a O(log2 g) approximation.

Main question: Fixed parameter (in)tractability, e.g. exact
algorithm in time f (g)poly(n)?
Our result is a FPT approximation scheme:

Theorem
Let G be a (edge-weighted) graph embedded on a surface S of
genus g . For any ε > 0, we can compute a (1+ ε)-approximation of
the shortest cut graph of G in time f (ε, g)n3 for some function f .
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Section 1

Overview of the techniques
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Our techniques

Similarity with connectivity problems like TSP, Steiner Tree,
Steiner Forest, . . .
For all of these, there was a flurry of new results using the
spanner framework of [Klein ’05].

A spanner is a subgraph
of total length O(f (g , ε)OPT ).
containing a (1+ ε)-approximation of the optimal cut graph.

For many problems, such a spanner can be efficiently computed.
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Our techniques 2

1 We compute a spanner Gspan for the problem.
2 We contract a small set of edges of Gspan to obtain a graph

Gtw of reasonable treewidth.
3 We use dynamic programming on Gtw to compute its

optimal cut graph Ctw .
4 We uncontract the previous edges to recover a subgraph C ′

of G .
5 We remove excessive edges to obtain a cut graph C
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Our techniques 3

1 We compute a spanner Gspan for the problem.

Brick decompositions of [Borradaile, Klein, Mathieu ’09],
[Borradaile, Demaine, Tazari ’14]

2 We contract a small set of edges of Gspan to obtain a graph
Gtw of reasonable treewidth .

Results of contraction-decomposition of [Demaine, Hajiaghayi,
Mohar ’10], [Demaine, Hajiaghayi, Kawarabayashi ’11].

3 We use dynamic programming on Gtw to compute its
optimal cut graph Ctw .

Surface-cut decompositions of [Rué, Sau and Thilikos ’14]

4 We uncontract the previous edges to recover a subgraph C ′

of G .
5 We remove excessive edges.
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Section 2

A spanner for the optimal cut-graph

A spanner is a subgraph
of total length O(f (g , ε)OPT ).
containing a (1+ ε)-approximation of the optimal cut graph.
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Step 1. Computing a spanner

We start with a O(log2 g) approximation of COPT , and cut
along it.
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Step 1. Computing a spanner

COPT is now a forest in a disk D of boundary length
|∂D| = O(log2 g)OPT .
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Step 1. Computing a spanner

We decompose the disk into bricks of length
f (ε)|∂D| = f (ε, g)OPT .
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Step 1. Computing a spanner

We put regularly spaced portals on the boundaries of the
bricks.
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Step 1. Computing a spanner

We prove a structure theorem showing that ’pushing’ COPT

so that it goes through the portals does not make it much
longer.
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Step 1. Computing a spanner

We prove a structure theorem showing that ’pushing’ COPT

so that it goes through the portals does not make it much
longer.

The spanner Gspan is obtained by computing Steiner trees for
every possible subset of portals in every brick.
Proofs similar to [Borradaile, Klein, Mathieu ’09],[Borradaile,
Demaine, Tazari ’14]
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Section 3

Computing an optimal cut graph in bounded
tree-width
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Step 3. Dynamic programming and bounded tree-width

Tree decompositions are commonly used as a basis for dynamic
programming .
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For this problem they lack a topological structure.
Instead we will rely on a variant of branch decompositions
called Surface-cut decompositions [Rué, Sau, Thilikos ’14].
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Step 3. Surface-cut decompositions

Branch decomposition:
Tree T such that every edge of the tree partitions the edges of G
into subgraphs G1 and G2 such that |G1 ∩ G2| is not too big .
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Step 3. Surface-cut decompositions

Surface-cut decomposition:
Tree T such that every edge of the tree partitions the edges of G
and the surface S into subgraphs G1 and G2 and connected
subsurfaces S1 and S2 such that Gi ⊆ Si and S1 ∩ S2 is not too
complicated.

a b c

d e f

g h i

ab be

bc

cf

ef

fi
hieh

gh

dg

de

ad

With a surface-cut decomposition, it is easy to design a
dynamic programming algorithm to compute an optimal cut
graph.
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Step 3. Computing a surface-cut decomposition

Theorem (Rué, Sau, Thilikos ’14)

Given a graph G polyhedrally embedded a on a surface of genus g
and branch-width k , one can compute a surface-cut decomposition
of G of width O(g + k) in time 2O(k)n3.

aG is polyhedrally embedded if G is 3-connected and the smallest length of
a non-contractible noose is at least 3 or if G is a clique and it has at most 3
vertices

We provide two ways to circumvent the polyhedrality hypothesis:

We provide another algorithm which does not need it, relying
on a lemma of Inkmann.
We provide a construction to make a graph embedding
polyhedral while controlling its branch-width.
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Perspectives

Fixed parameter (in)tractability of this problem?
What is the best approximation ratio for polynomial (in n and
g).

Thank you !
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