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Surfaces and embedded graphs

@ A surface is a topological space which looks locally like the
plane.

Q@ O & w»

e Connected, compact surfaces without boundary are classified
by their genus g.

e An embedding of a graph G on a surface S is a drawing of G
on S W|th no CrOSSingS and every face is a topological disk.

We denote such an embedding by (S, G), we use g for the genus of
S and n for the number of vertices of G.
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Cut graph

A cut graph of (S, G) is a subgraph C of G such that cutting S
along C gives a topological disk.

E &

This talk is about the following problem.

Optimal cut graph

Input: Graph G embedded on S.
Output: Shortest possible cut graph Copr of (S, G).
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Why should we care about (optimal) cut graphs?

o Cookie-cutter algorithm for (almost) any problem for
surface-embedded graphs:
@ Cut the surface into the plane.

@ Solve the planar case.
© Recover the solution.

@ More practical problems, for example texture mapping.

In all cases:

@ We need efficient algorithms to do the cutting.
@ The quality of the solution depends on the length of the cut
graph.
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Previous work on cut graphs

Optimal cut graph

Input: Graph G embedded on S.
Output: Shortest possible cut graph Copr of (S, G).

Introduced by |[Erickson, Har-Peled '04].

@ NP-hard by reduction from Steiner tree.

e Exact algorithm in n©(&).

e Polynomial algorithm to compute a O(log® g) approximation.
Main question: Fixed parameter (in)tractability, e.g. exact
algorithm in time f(g)poly(n)?

Our result is a FPT approximation scheme:

Let G be a (edge-weighted) graph embedded on a surface S of
genus g. For any e > 0, we can compute a (1 + €)-approximation of
the shortest cut graph of G in time (s, g)n® for some function f.
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Section 1
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Our techniques

e Similarity with connectivity problems like TSP, Steiner Tree,

Steiner Forest, ...

@ For all of these, there was a flurry of new results using the
spanner framework of [Klein '05].

A spanner is a subgraph
e of total length O(f(g,c)OPT).

@ containing a (1 + £)-approximation of the optimal cut graph.

For many problems, such a spanner can be efficiently computed.
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Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph GC,.

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C
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Our techniques 3
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Section 2

A spanner for the optimal cut-graph

A spanner is a subgraph
e of total length O(f(g,c)OPT).

@ containing a (1 4 €)-approximation of the optimal cut graph.
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Step 1. Computing a spanner

o We start with a O(Iog2 g) approximation of Copr, and cut
along it.
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Step 1. Computing a spanner

@ CopT is now a forest in a disk D of boundary length
|0D| = O(log? g)OPT.
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Step 1. Computing a spanner

@ We decompose the disk into bricks of length
f(e)|0OD| = f(e,g)OPT.
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Step 1. Computing a spanner

o We put regularly spaced portals on the boundaries of the
bricks.
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Step 1. Computing a spanner

@ We prove a structure theorem showing that 'pushing’ Copt
so that it goes through the portals does not make it much
longer.
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Step 1. Computing a spanner

@ We prove a structure theorem showing that 'pushing’ Copt
so that it goes through the portals does not make it much

longer.
{
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@ The spanner Gypaj, is obtained by computing Steiner trees for
every possible subset of portals in every brick.

@ Proofs similar to [Borradaile, Klein, Mathieu '09],[Borradaile,
Demaine, Tazari '14]
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Section 3

Computing an optimal cut graph in bounded
tree-width

31/37



Step 3. Dynamic programming and bounded tree-width

@ Tree decompositions are commonly used as a basis for dynamic
programming .

@ For this problem they lack a topological structure.

@ Instead we will rely on a variant of branch decompositions
called Surface-cut decompositions [Rué, Sau, Thilikos '14].
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Step 3. Surface-cut decompositions

Branch decomposition:
Tree T such that every edge of the tree partitions the edges of G
into subgraphs G; and G, such that |G; N G| is not too big .

ab be
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Step 3. Surface-cut decompositions

Surface-cut decomposition:

Tree T such that every edge of the tree partitions the edges of G
and the surface S into subgraphs G; and G, and connected
subsurfaces S; and S, such that G; C S; and $; N S, is not too
complicated.

@ With a surface-cut decomposition, it is easy to design a
dynamic programming algorithm to compute an optimal cut

graph.
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Step 3. Computing a surface-cut decomposition

Theorem (Rué, Sau, Thilikos '14)

Given a graph G polyhedrally embedded @ on a surface of genus g
and branch-width k, one can compute a surface-cut decomposition
of G of width O(g + k) in time 2°(K)p3.

?G is polyhedrally embedded if G is 3-connected and the smallest length of
a non-contractible noose is at least 3 or if G is a clique and it has at most 3
vertices

We provide two ways to circumvent the polyhedrality hypothesis:

@ We provide another algorithm which does not need it, relying
on a lemma of Inkmann.

@ We provide a construction to make a graph embedding
polyhedral while controlling its branch-width.
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o Fixed parameter (in)tractability of this problem?
@ What is the best approximation ratio for polynomial (in n and
g).
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o Fixed parameter (in)tractability of this problem?
@ What is the best approximation ratio for polynomial (in n and
g).

Thank you !

37/37



