A Fixed Parameter Tractable Approximation
Scheme for the Optimal Cut Graph of a Surface

Vincent Cohen-Addad ! Arnaud de Mesmay 2

1Ecole normale supérieure, Paris, France

2|ST Austria, Klosterneuburg, Austria
@

1/37

From Donuts to Crépes

2/37

From Bretzels to

3/37

Surfaces and embedded graphs

@ A surface is a topological space which looks locally like the
plane.

Q@ O & w»

e Connected, compact surfaces without boundary are classified
by their genus g.

e An embedding of a graph G on a surface S is a drawing of G
on S W|th no CrOSSingS and every face is a topological disk.

We denote such an embedding by (S, G), we use g for the genus of
S and n for the number of vertices of G.

4/37

Cut graph

A cut graph of (S, G) is a subgraph C of G such that cutting S
along C gives a topological disk.

E &

This talk is about the following problem.

Optimal cut graph

Input: Graph G embedded on S.
Output: Shortest possible cut graph Copr of (S, G).

5/37

Why should we care about (optimal) cut graphs?

o Cookie-cutter algorithm for (almost) any problem for
surface-embedded graphs:
@ Cut the surface into the plane.

@ Solve the planar case.
© Recover the solution.

@ More practical problems, for example texture mapping.

In all cases:

@ We need efficient algorithms to do the cutting.
@ The quality of the solution depends on the length of the cut
graph.

6 /37

Previous work on cut graphs

Optimal cut graph

Input: Graph G embedded on S.
Output: Shortest possible cut graph Copr of (S, G).

Introduced by |[Erickson, Har-Peled '04].

@ NP-hard by reduction from Steiner tree.

e Exact algorithm in n©(&).

e Polynomial algorithm to compute a O(log® g) approximation.
Main question: Fixed parameter (in)tractability, e.g. exact
algorithm in time f(g)poly(n)?

Our result is a FPT approximation scheme:

Let G be a (edge-weighted) graph embedded on a surface S of
genus g. For any e > 0, we can compute a (1 + €)-approximation of
the shortest cut graph of G in time (s, g)n® for some function f.

7/37

Section 1

8/37

Our techniques

e Similarity with connectivity problems like TSP, Steiner Tree,

Steiner Forest, ...

@ For all of these, there was a flurry of new results using the
spanner framework of [Klein '05].

A spanner is a subgraph
e of total length O(f(g,c)OPT).

@ containing a (1 + £)-approximation of the optimal cut graph.

For many problems, such a spanner can be efficiently computed.

9/37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph GC,.

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C

10/37

Our techniques 2

@ — We compute a spanner Gsp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph G, .

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C

11/37

Our techniques 2

@ — We compute a spanner Gsp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph G, .

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C

==

12/37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ — We contract a small set of edges of Gspan to obtain a
graph G, of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph G, .

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C

o~

13/37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ — We contract a small set of edges of Gspan to obtain a
graph G, of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph G, .

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C

14 /37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© — We use dynamic programming on Gy, to compute its
optimal cut graph GC,.

@ We uncontract the previous edges to recover a subgraph C’
of G.

© We remove excessive edges to obtain a cut graph C

15 /37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph GC,.

@ — We uncontract the previous edges to recover a subgraph
C’of G.

© We remove excessive edges to obtain a cut graph C

16 /37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph Cy,.

@ — We uncontract the previous edges to recover a subgraph
C’of G.

© We remove excessive edges to obtain a cut graph C

17 /37

Our techniques 2

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth.

© We use dynamic programming on Gy, to compute its
optimal cut graph Cy,.

@ We uncontract the previous edges to recover a subgraph C’
of G.

@ — We remove excessive edges to obtain a cut graph C

18/37

Our techniques 3

@ We compute a spanner Ggp,, for the problem.

@ We contract a small set of edges of Gspap to obtain a graph
Gy Of reasonable treewidth .

© We use dynamic programming on Gy, to compute its
optimal cut graph Cy,.

© We uncontract the previous edges to recover a subgraph C’
of G.
@ We remove excessive edges.

19/37

Our techniques 3

@ We compute a spanner Ggp,, for the problem.

Brick decompositions of [Borradaile, Klein, Mathieu '09],
[Borradaile, Demaine, Tazari '14]

@ We contract a small set of edges of Gspan to obtain a graph
Gy of reasonable treewidth .

© We use dynamic programming on Gy, to compute its
optimal cut graph Cy,.

© We uncontract the previous edges to recover a subgraph C’
of G.
@ We remove excessive edges.

20/37

Our techniques 3

@ We compute a spanner Ggp,, for the problem.

Brick decompositions of [Borradaile, Klein, Mathieu '09],
[Borradaile, Demaine, Tazari '14] J

@ We contract a set of edges of length cOPT of Ggpan to
obtain a graph Gy, of treewidth O(f(g,¢)) .

© We use dynamic programming on Gy, to compute its
optimal cut graph Gy, .

@ We uncontract the previous edges to recover a subgraph C’
of G.
@ We remove excessive edges.

21/37

Our techniques 3

@ We compute a spanner Ggp,, for the problem.

Brick decompositions of [Borradaile, Klein, Mathieu '09],
[Borradaile, Demaine, Tazari '14] J

@ We contract a set of edges of length cOPT of Ggpan to
obtain a graph Gy, of treewidth O(f(g,¢)) .

Results of contraction-decomposition of [Demaine, Hajiaghayi,
Mohar '10], [Demaine, Hajiaghayi, Kawarabayashi '11].

© We use dynamic programming on Gy, to compute its
optimal cut graph Gy, .

@ We uncontract the previous edges to recover a subgraph C’
of G.
@ We remove excessive edges.

22/37

Our techniques 3

@ We compute a spanner Ggp,, for the problem.

Brick decompositions of [Borradaile, Klein, Mathieu '09],
[Borradaile, Demaine, Tazari '14] J

@ We contract a set of edges of length cOPT of Ggpan to
obtain a graph Gy, of treewidth O(f(g,¢)) .

Results of contraction-decomposition of [Demaine, Hajiaghayi,
Mohar '10], [Demaine, Hajiaghayi, Kawarabayashi '11].

© We use dynamic programming on Gy, to compute its
optimal cut graph Gy, .

Surface-cut decompositions of [Rué, Sau and Thilikos '14]]

@ We uncontract the previous edges to recover a subgraph C’
of G.
@ We remove excessive edges.

23/37

Section 2

A spanner for the optimal cut-graph

A spanner is a subgraph
e of total length O(f(g,c)OPT).

@ containing a (1 4 €)-approximation of the optimal cut graph.

24 /37

Step 1. Computing a spanner

o We start with a O(Iog2 g) approximation of Copr, and cut
along it.

25 /37

Step 1. Computing a spanner

@ CopT is now a forest in a disk D of boundary length
|0D| = O(log? g)OPT.

26 /37

Step 1. Computing a spanner

@ We decompose the disk into bricks of length
f(e)|0OD| = f(e,g)OPT.

27 /37

Step 1. Computing a spanner

o We put regularly spaced portals on the boundaries of the
bricks.

28 /37

Step 1. Computing a spanner

@ We prove a structure theorem showing that 'pushing’ Copt
so that it goes through the portals does not make it much
longer.

29 /37

Step 1. Computing a spanner

@ We prove a structure theorem showing that 'pushing’ Copt
so that it goes through the portals does not make it much

longer.
{

\J LY

Nt

@ The spanner Gypaj, is obtained by computing Steiner trees for
every possible subset of portals in every brick.

@ Proofs similar to [Borradaile, Klein, Mathieu '09],[Borradaile,
Demaine, Tazari '14]

30/37

Section 3

Computing an optimal cut graph in bounded
tree-width

31/37

Step 3. Dynamic programming and bounded tree-width

@ Tree decompositions are commonly used as a basis for dynamic
programming .

@ For this problem they lack a topological structure.

@ Instead we will rely on a variant of branch decompositions
called Surface-cut decompositions [Rué, Sau, Thilikos '14].

32/37

Step 3. Surface-cut decompositions

Branch decomposition:
Tree T such that every edge of the tree partitions the edges of G
into subgraphs G; and G, such that |G; N G| is not too big .

ab be

33/37

Step 3. Surface-cut decompositions

Surface-cut decomposition:

Tree T such that every edge of the tree partitions the edges of G
and the surface S into subgraphs G; and G, and connected
subsurfaces S; and S, such that G; C S; and $; N S, is not too
complicated.

@ With a surface-cut decomposition, it is easy to design a
dynamic programming algorithm to compute an optimal cut

graph.

34/37

Step 3. Computing a surface-cut decomposition

Theorem (Rué, Sau, Thilikos '14)

Given a graph G polyhedrally embedded @ on a surface of genus g
and branch-width k, one can compute a surface-cut decomposition
of G of width O(g + k) in time 2°(K)p3.

?G is polyhedrally embedded if G is 3-connected and the smallest length of
a non-contractible noose is at least 3 or if G is a clique and it has at most 3
vertices

We provide two ways to circumvent the polyhedrality hypothesis:

@ We provide another algorithm which does not need it, relying
on a lemma of Inkmann.

@ We provide a construction to make a graph embedding
polyhedral while controlling its branch-width.

35/37

o Fixed parameter (in)tractability of this problem?
@ What is the best approximation ratio for polynomial (in n and
g).

36/37

o Fixed parameter (in)tractability of this problem?
@ What is the best approximation ratio for polynomial (in n and
g).

Thank you !

37/37

