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Set Representations of Graphs

Definition

For a collection S of sets Sy, ..., Sy, the intersection graph
G(S) of S has vertex set S and edge set
{SiSj:i,je{1,...,n},i#j,and §;N S; # (}.

We call S an intersection representation of G(S).

http://upload.wikimedia.org/wikipedia/commons/e/e9/Intersection_

graph.gif
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Crossing

Two connected sets cross if their difference is disconnected.

Non - Crossing Crossing
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Non-crossing Classes

Recognition

» Non-crossing Arc-Connected sets (pseudo-disk): NP-hard.
[Kratochvil 1996]

» Disk: NP-hard. [Kratochvil 1996]
» Unit Disk: NP-hard. [Breu, Kirkpatrick 1998]

» Homothetic Copies of a Convex Polygon: NP-hard
[Kratochvil, Pergel 2008]

Anything Tractable ... ?? Yes!

» Proper Interval Graphs O(n+ m)
[Corneil, Kamula 1987; Deng, Hell, Huang 1996]
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Classic Intersection Classes

» Interval Graphs: intersection graphs of subpaths of a path.
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Classic Intersection Classes

v

Interval Graphs: intersection graphs of subpaths of a path.
Chordal Graphs: no induced k-cycle (k > 4) = intersection
graphs of subtrees of a tree. [Gavril 1974]

Path-Tree Graphs: intersection graphs of paths in a tree.
Directed Path-Tree Graphs: directed paths in an oriented
tree.
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Classic Intersection Classes

v

Interval Graphs: intersection graphs of subpaths of a path.

Chordal Graphs: no induced k-cycle (k > 4) = intersection
graphs of subtrees of a tree. [Gavril 1974]

Path-Tree Graphs: intersection graphs of paths in a tree.
Directed Path-Tree Graphs: directed paths in an oriented
tree.

Rooted Path-Tree Graphs: directed paths in a rooted tree.
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Results

1. NC Path Tree = Claw-Free Chordal.

2. NC Directed Path-Tree = NC Rooted Path-Tree =
(Claw,3-sun)-free Chordal.

3. Polytime Dominating Set (DS) on NC Path-Tree graphs.

New proof of Proper interval = (Claw,3-sun,Net)-free Chordal.
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Warm-up: Claw-freeness

Observation
If G is an NC-path graph then, G is claw-free.

Proof.
\? __I
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Consider a Clique Tree T, of a Claw-free Chordal graph G

» Claim 1: Every vertex of G represented by a path in T.
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Characterizations

Thm: NC Path-tree = Claw-Free Chordal
NC Path-tree C Claw-Free Chordal, by prev. Observation.

Consider a Clique Tree T, of a Claw-free Chordal graph G
» Claim 1: Every vertex of G represented by a path in T.
» Claim 2: These paths are non-crossing.

L
| 4 y D, Dy/ _/

C C’

Note: this implies every clique tree of a Claw-free Graph is an
NC Path-tree!
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High Degree Nodes in NC Path-Tree Models

Consider a Clique Tree T, of a Claw-free Chordal graph G:
» If Cisinternal to a path of T, then C has degree < 3.
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High Degree Nodes in NC Path-Tree Models

Consider a Clique Tree T, of a Claw-free Chordal graph G:
» If Cisinternal to a path of T, then C has degree < 3.
» Moreover, C is the centre of a 3-sun.
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(Claw,3-sun)-Free Chordal

Note: 3-sun is not a Directed Path-Tree Graph. Moreover, by
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nodes are “terminals.”
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(Claw,3-sun)-Free Chordal

Note: 3-sun is not a Directed Path-Tree Graph. Moreover, by
the previous slide, forbidding the 3-sun means all degree > 3
nodes are “terminals.”

4-Net

[ )
terminal—jl

Theorem

NC Directed Path-Tree C (Claw,3-sun)-free Chordal C NC
Rooted Path-Tree Graphs .

Proof.

Simply root the representation at any “terminal”. The result is
an NC rooted path-tree representation. Ol
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(Claw,3-sun)-Free Chordal

Note: 3-sun is not a Directed Path-Tree Graph. Moreover, by
the previous slide, forbidding the 3-sun means all degree > 3
nodes are “terminals.”

T 4-Net %
terminal —/

Theorem (Wenger 1967)

Proper Interval = (Claw, 3-sun, Net)-free Chordal.

Proof.

By forbidding Nets we further forbid any node in T to have
degree > 3. O
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The Problem

MDS: Minimum set D of vertices such that every vertex is in D
or adjacent to one in D.

» MDS is NP-complete on Path-Tree graphs. [Booth,
Johnson 1982]

» MDS can be solved in O(n+ m) time on Rooted Path-Tree
graphs [Booth, Johnson 1982]

Theorem

MDS can be solved in polynomial time on NC Path-Tree graphs.

Idea: Mark the “3-suns” in the clique tree T. Root it at a leaf.
Process T “bottom-up” computing some MDSs on the parts of
T between the “3-suns”.
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MDS algorithm for NC-path-tree

» We first contract true-twins.

» Now, all the high-degree non-terminals exactly three paths,
and form the centre of a 3-sun.

» Process T bottom-up to compute the MDS.

1. Dominating set contains at most one of x, y, z.

2. “cut” G on the separator xy to make the Rooted
representations.
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Concluding Remarks

Results (in this talk):

» NC Path-Tree = Claw-free Chordal, Directed/Rooted NC
Path-Tree = (Claw,3-sun)-free Chordal.

» MDS on NC-Path-Tree in polynomial time.

Other results (not presented in this talk):
» FISC for NC Tree-Tree.
» Polynomial time recognition of NC Segment-Plane graphs.

Open Questions:
1. What about NC Path-Grid graphs? i.e., NC-string?
2. What about NC Tree-Grid graphs?

Thank you!
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