
1

Background: Intersection Graphs Characterizations Minimum Dominating Set

Intersection Graphs of
Non-crossing Paths

Steven Chaplick

Lehrstuhl für Informatik I, Universität Würzburg, Germany,
steven.chaplick@uni-wuerzburg.de

GROW 2015, Modane, France.

steven.chaplick@uni-wuerzburg.de


2

Background: Intersection Graphs Characterizations Minimum Dominating Set

Outline

Background: Intersection Graphs

Characterizations

Minimum Dominating Set



3

Background: Intersection Graphs Characterizations Minimum Dominating Set

Outline

Background: Intersection Graphs

Characterizations

Minimum Dominating Set



4

Background: Intersection Graphs Characterizations Minimum Dominating Set

Set Representations of Graphs
Definition
For a collection S of sets S1, ...,Sn, the intersection graph
G(S) of S has vertex set S and edge set
{SiSj : i , j ∈ {1, ...,n}, i 6= j , and Si ∩ Sj 6= ∅}.
We call S an intersection representation of G(S).

http://upload.wikimedia.org/wikipedia/commons/e/e9/Intersection_

graph.gif

http://upload.wikimedia.org/wikipedia/commons/e/e9/Intersection_graph.gif
http://upload.wikimedia.org/wikipedia/commons/e/e9/Intersection_graph.gif
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Crossing

Two connected sets cross if their difference is disconnected.

Crossing Non - Crossing 
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Non-crossing Classes

Recognition
I Non-crossing Arc-Connected sets (pseudo-disk): NP-hard.

[Kratochvil 1996]

I Disk: NP-hard. [Kratochvil 1996]
I Unit Disk: NP-hard. [Breu, Kirkpatrick 1998]
I Homothetic Copies of a Convex Polygon: NP-hard

[Kratochvil, Pergel 2008]
Anything Tractable ... ?? Yes!

I Proper Interval Graphs O(n + m)
[Corneil, Kamula 1987; Deng, Hell, Huang 1996]
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Classic Intersection Classes

I Interval Graphs: intersection graphs of subpaths of a path.

I Chordal Graphs: no induced k -cycle (k ≥ 4) = intersection
graphs of subtrees of a tree. [Gavril 1974]

I Path-Tree Graphs: intersection graphs of paths in a tree.
I Directed Path-Tree Graphs: directed paths in an oriented

tree.
I Rooted Path-Tree Graphs: directed paths in a rooted tree.

d
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This graph is not rootable!
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Results

1. NC Path Tree = Claw-Free Chordal.

2. NC Directed Path-Tree = NC Rooted Path-Tree =
(Claw,3-sun)-free Chordal.

3. Polytime Dominating Set (DS) on NC Path-Tree graphs.

New proof of Proper interval = (Claw,3-sun,Net)-free Chordal.

Claw
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Warm-up: Claw-freeness

Observation
If G is an NC-path graph then, G is claw-free.

Proof.

?
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Thm: NC Path-tree = Claw-Free Chordal
NC Path-tree ⊆ Claw-Free Chordal, by prev. Observation.

Consider a Clique Tree T , of a Claw-free Chordal graph G

I Claim 1: Every vertex of G represented by a path in T .
I Claim 2: These paths are non-crossing.

Note: this implies every clique tree of a Claw-free Graph is an
NC Path-tree!
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High Degree Nodes in NC Path-Tree Models
Consider a Clique Tree T , of a Claw-free Chordal graph G:

I If C is internal to a path of T , then C has degree ≤ 3.

I Moreover, C is the centre of a 3-sun.

px C
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px  p 
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High Degree Nodes in NC Path-Tree Models
Consider a Clique Tree T , of a Claw-free Chordal graph G:

I If C is internal to a path of T , then C has degree ≤ 3.
I Moreover, C is the centre of a 3-sun.

3-sun
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(Claw,3-sun)-Free Chordal
Note: 3-sun is not a Directed Path-Tree Graph. Moreover, by
the previous slide, forbidding the 3-sun means all degree ≥ 3
nodes are “terminals.”

4-Net

terminal

Theorem
NC Directed Path-Tree ⊆ (Claw,3-sun)-free Chordal ⊆ NC
Rooted Path-Tree Graphs .

Proof.
Simply root the representation at any “terminal”. The result is
an NC rooted path-tree representation.

Theorem (Wenger 1967)

Proper Interval = (Claw, 3-sun, Net)-free Chordal.

Proof.
By forbidding Nets we further forbid any node in T to have
degree ≥ 3.
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The Problem

MDS: Minimum set D of vertices such that every vertex is in D
or adjacent to one in D.

I MDS is NP-complete on Path-Tree graphs. [Booth,
Johnson 1982]

I MDS can be solved in O(n + m) time on Rooted Path-Tree
graphs [Booth, Johnson 1982]

Theorem
MDS can be solved in polynomial time on NC Path-Tree graphs.

Idea: Mark the “3-suns” in the clique tree T . Root it at a leaf.
Process T “bottom-up” computing some MDSs on the parts of
T between the “3-suns”.
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MDS algorithm for NC-path-tree

I We first contract true-twins.

I Now, all the high-degree non-terminals exactly three paths,
and form the centre of a 3-sun.

I Process T bottom-up to compute the MDS.

1. Dominating set contains at most one of x , y , z.
2. “cut” G on the separator xy to make the Rooted

representations.



42

Background: Intersection Graphs Characterizations Minimum Dominating Set

MDS algorithm for NC-path-tree

I We first contract true-twins.
I Now, all the high-degree non-terminals exactly three paths,

and form the centre of a 3-sun.

I Process T bottom-up to compute the MDS.

1. Dominating set contains at most one of x , y , z.
2. “cut” G on the separator xy to make the Rooted

representations.

Source

px py
pzpr

pg

pb



43

Background: Intersection Graphs Characterizations Minimum Dominating Set

MDS algorithm for NC-path-tree

I We first contract true-twins.
I Now, all the high-degree non-terminals exactly three paths,

and form the centre of a 3-sun.
I Process T bottom-up to compute the MDS.

1. Dominating set contains at most one of x , y , z.
2. “cut” G on the separator xy to make the Rooted

representations.

Source

px py
pzpr

pg

pb



44

Background: Intersection Graphs Characterizations Minimum Dominating Set

MDS algorithm for NC-path-tree

I We first contract true-twins.
I Now, all the high-degree non-terminals exactly three paths,

and form the centre of a 3-sun.
I Process T bottom-up to compute the MDS.

1. Dominating set contains at most one of x , y , z.

2. “cut” G on the separator xy to make the Rooted
representations.

Source

px py
pzpr

pg

pb



45

Background: Intersection Graphs Characterizations Minimum Dominating Set

MDS algorithm for NC-path-tree

I We first contract true-twins.
I Now, all the high-degree non-terminals exactly three paths,

and form the centre of a 3-sun.
I Process T bottom-up to compute the MDS.

1. Dominating set contains at most one of x , y , z.
2. “cut” G on the separator xy to make the Rooted

representations.

Source

px py
pzpr

pg

pb



46

Background: Intersection Graphs Characterizations Minimum Dominating Set

Concluding Remarks
Results (in this talk):

I NC Path-Tree = Claw-free Chordal, Directed/Rooted NC
Path-Tree = (Claw,3-sun)-free Chordal.

I MDS on NC-Path-Tree in polynomial time.

Other results (not presented in this talk):
I FISC for NC Tree-Tree.
I Polynomial time recognition of NC Segment-Plane graphs.

Open Questions:
1. What about NC Path-Grid graphs? i.e., NC-string?
2. What about NC Tree-Grid graphs?

Thank you!
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