Colouring graph classes with constraints on local connectivity

Nick Brettell

Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences

Joint work with Pierre Aboulker, Frédéric Havet, Dániel Marx, and Nicolas Trotignon

> GROW 2015, Aussois, France, 13 October 2015

We are interesting in (proper) vertex colouring

• Let k be a fixed integer at least 3

k-COLOURABILITY **Input:** a graph *G* **Question:** is there a *k*-colouring of *G*?

• *k*-COLOURABILITY is well known to be NP-complete for any fixed $k \geq 3$

Motivation:

• Are there (interesting) classes defined in terms of connectivity for which *k*-COLOURABILITY is in P?

- The local connectivity κ(x, y) of distinct vertices x and y in a graph is the maximum number of internally disjoint paths between x and y
- An xy-vertex cut is a subset Z of V(G) such that x and y are in different components of G – Z

Theorem (Menger, 1927)

Let x and y be non-adjacent vertices. Then the minimum number of vertices in an xy-vertex cut is equal to $\kappa(x, y)$.

 A graph G is k-connected if it has at least 2 vertices and κ(x, y) ≥ k for all distinct x, y ∈ V(G)

- The local connectivity κ(x, y) of distinct vertices x and y in a graph is the maximum number of internally disjoint paths between x and y
- An xy-vertex cut is a subset Z of V(G) such that x and y are in different components of G – Z

Theorem (Menger, 1927)

Let x and y be non-adjacent vertices. Then the minimum number of vertices in an xy-vertex cut is equal to $\kappa(x, y)$.

 A graph G is k-connected if it has at least 2 vertices and κ(x, y) ≥ k for all distinct x, y ∈ V(G)

Theorem (Brooks, 1941)

For any connected graph G with maximum degree k,

- if G is not a complete graph nor an odd cycle, then G is k-colourable
- otherwise, G is not k-colourable, but is (k + 1)-colourable.
- *k*-COLOURABILITY is polynomial for graphs with maximum degree *k* by Brooks' Theorem
- The classes we will consider contain the class of (*k*-connected) graphs with maximum degree at most *k*
- e.g. minimally k-connected graphs

Theorem (Brooks, 1941)

For any connected graph G with maximum degree k,

- if G is not a complete graph nor an odd cycle, then G is k-colourable
- otherwise, G is not k-colourable, but is (k+1)-colourable.
- *k*-COLOURABILITY is polynomial for graphs with maximum degree *k* by Brooks' Theorem
- The classes we will consider contain the class of (*k*-connected) graphs with maximum degree at most *k*
- e.g. minimally k-connected graphs

- A graph is minimally *k*-connected if it is *k*-connected, but is no longer *k*-connected after the removal of any edge
- We say G is k-chord-free if $\kappa(x, y) \leq k$ for all adjacent $x, y \in V(G)$

- A graph is minimally *k*-connected if it is *k*-connected, but is no longer *k*-connected after the removal of any edge
- We say G is k-chord-free if $\kappa(x, y) \le k$ for all adjacent $x, y \in V(G)$

- G is k-chord-free if $\kappa(x, y) \le k$ for adjacent $x, y \in V(G)$.
- G has maximal local connectivity k if $\kappa(x, y) \le k$ for every $x, y \in V(G)$.
- G has maximal local edge-connectivity k if $\lambda(x, y) \leq k$ for every $x, y \in V(G)$,

where the local edge-connectivity $\lambda(x, y)$ of distinct vertices x and y is the maximum number of edge-disjoint paths between x and y.

Each of these classes is closed under taking subgraphs.

We can also consider the k-connected subclasses of each. In particular:

- G is k-chord-free if $\kappa(x, y) \le k$ for adjacent $x, y \in V(G)$.
- G has maximal local connectivity k if $\kappa(x, y) \le k$ for every $x, y \in V(G)$.
- G has maximal local edge-connectivity k if λ(x, y) ≤ k for every x, y ∈ V(G),

where the local edge-connectivity $\lambda(x, y)$ of distinct vertices x and y is the maximum number of edge-disjoint paths between x and y.

Each of these classes is closed under taking subgraphs.

We can also consider the k-connected subclasses of each. In particular:

- G is k-chord-free if $\kappa(x, y) \le k$ for adjacent $x, y \in V(G)$.
- G has maximal local connectivity k if $\kappa(x, y) \le k$ for every $x, y \in V(G)$.
- G has maximal local edge-connectivity k if λ(x, y) ≤ k for every x, y ∈ V(G),

where the local edge-connectivity $\lambda(x, y)$ of distinct vertices x and y is the maximum number of edge-disjoint paths between x and y.

Each of these classes is closed under taking subgraphs.

We can also consider the k-connected subclasses of each. In particular:

- G is k-chord-free if $\kappa(x, y) \le k$ for adjacent $x, y \in V(G)$.
- G has maximal local connectivity k if $\kappa(x, y) \le k$ for every $x, y \in V(G)$.
- G has maximal local edge-connectivity k if λ(x, y) ≤ k for every x, y ∈ V(G),

where the local edge-connectivity $\lambda(x, y)$ of distinct vertices x and y is the maximum number of edge-disjoint paths between x and y.

Each of these classes is closed under taking subgraphs.

We can also consider the k-connected subclasses of each. In particular:

Graphs with maximal local edge-connectivity 3

What graphs are in the class?

- all cubic graphs
- all graphs with one vertex of degree more than 3 (e.g. wheels)
- some graphs with arbitrarily many vertices of degree more than 3

Theorem (Mader, 1973)

Let G be a graph with at least one edge. Then there exists an edge $xy \in E(G)$ such that $\kappa(x, y) = \min\{d(x), d(y)\}$.

Corollary

If G is a k-chord-free graph, then G has a vertex of degree at most k.

Corollary

If G is a k-chord-free graph, then G is (k + 1)-colourable.

The interesting question is whether G is k-colourable.

Theorem (Mader, 1973)

Let G be a graph with at least one edge. Then there exists an edge $xy \in E(G)$ such that $\kappa(x, y) = \min\{d(x), d(y)\}$.

Corollary

If G is a k-chord-free graph, then G has a vertex of degree at most k.

Corollary

If G is a k-chord-free graph, then G is (k + 1)-colourable.

The interesting question is whether G is k-colourable.

Theorem (Mader, 1973)

Let G be a graph with at least one edge. Then there exists an edge $xy \in E(G)$ such that $\kappa(x, y) = \min\{d(x), d(y)\}$.

Corollary

If G is a k-chord-free graph, then G has a vertex of degree at most k.

Corollary

If G is a k-chord-free graph, then G is (k + 1)-colourable.

The interesting question is whether G is k-colourable.

3-COLOURING complexity

GROW 2015

3-COLOURING complexity

3-COLOURING complexity

Proposition (ABHMT)

A 3-connected graph with maximal local connectivity 3 has maximal local edge-connectivity 3.

 For k ≥ 4, a k-connected graph with maximal local connectivity k may have maximal local edge-connectivity strictly more than k

3-COLOURING complexity: results

3-COLOURING complexity: results

Colourability of minimally k-connected graphs

Proposition (ABHMT)

For fixed $k \ge 3$, k-COLOURABILITY remains NP-complete when restricted to minimally k-connected graphs.

- *k*-uniform hypergraph *k*-colourability is NP-complete for $k \geq 3$
- Reduce to *k*-COLOURABILITY on minimally *k*-connected graphs
- Gadgets:

Proposition (ABHMT)

For fixed $k \ge 3$, the problem of deciding if a (k - 1)-connected graph with maximal local connectivity k is 3-colourable is NP-complete.

Proof idea for k = 3.

Reduce 3-COLOURABILITY (for any graph) to 3-COLOURABILITY for 2-connected graphs with maximal local connectivity 3.

Replace each high-degree vertex with a gadget like:

Proposition (ABHMT)

For fixed $k \ge 3$, the problem of deciding if a (k - 1)-connected graph with maximal local connectivity k is 3-colourable is NP-complete.

Proof idea for k = 3.

Reduce 3-COLOURABILITY (for any graph) to 3-COLOURABILITY for 2-connected graphs with maximal local connectivity 3.

Replace each high-degree vertex with a gadget like:

3-COLOURING complexity: state of play

Proposition (ABHMT, 2015)

k-COLOURING, restricted to *k*-connected graphs with maximal local edge-connectivity *k*, is in *P*.

In fact...

Theorem (ABHMT, 2015)

Let $k \ge 3$. A k-connected graph with maximal local edge-connectivity k is k-colourable if and only if it is not a complete graph nor an odd wheel.

Proof to follow.

Proposition (ABHMT, 2015)

k-COLOURING, restricted to *k*-connected graphs with maximal local edge-connectivity *k*, is in *P*.

In fact...

Theorem (ABHMT, 2015)

Let $k \ge 3$. A k-connected graph with maximal local edge-connectivity k is k-colourable if and only if it is not a complete graph nor an odd wheel.

Proof to follow.

Graphs with maximal local edge-connectivity 3

When k = 3, we can drop the 3-connectivity requirement:

Theorem (ABHMT)

Let G be a graph with maximal local edge-connectivity 3. Then G is 3-colourable if and only if each block of G cannot be obtained from odd wheels by performing Hajós joins.

Hajós join:

Theorem (ABHMT)

Let $k \ge 3$. A k-connected graph G with maximal local edge-connectivity k is k-colourable if and only if it is not a complete graph nor an odd wheel.

There are three ingredients to the proof:

- If a k-connected graph has at most one vertex of degree more than k and no dominating vertices, then it is k-colourable
- If G has more than one high-degree vertex, there is a k-edge cut S separating X from Y where X has one high-degree vertex
- G is k-colourable if and only if there are colourings of G[X] and G[Y] where the colours given to the vertices incident with S are not all the same in one and all different in the other

< □ > < /□ > < /□ >

Theorem (ABHMT)

Let $k \ge 3$. A k-connected graph G with maximal local edge-connectivity k is k-colourable if and only if it is not a complete graph nor an odd wheel.

There are three ingredients to the proof:

- If a k-connected graph has at most one vertex of degree more than k and no dominating vertices, then it is k-colourable
- If G has more than one high-degree vertex, there is a k-edge cut S separating X from Y where X has one high-degree vertex
- ⁽³⁾ G is k-colourable if and only if there are colourings of G[X] and G[Y] where the colours given to the vertices incident with S are not all the same in one and all different in the other

くロト く伺 ト くきト くきト

Theorem (ABHMT)

Let $k \ge 3$. A k-connected graph G with maximal local edge-connectivity k is k-colourable if and only if it is not a complete graph nor an odd wheel.

There are three ingredients to the proof:

- If a k-connected graph has at most one vertex of degree more than k and no dominating vertices, then it is k-colourable
- If G has more than one high-degree vertex, there is a k-edge cut S separating X from Y where X has one high-degree vertex
- G is k-colourable if and only if there are colourings of G[X] and G[Y] where the colours given to the vertices incident with S are not all the same in one and all different in the other

Let G be a 3-connected graph with at most one vertex of degree more than k, and no dominating vertices. Then G is k-colourable.

Lovász (1975) gave a short proof of Brooks' theorem: can easily adapt that proof in order to prove this lemma.

There exists a k-edge cut S separating X from Y where X has precisely one high-degree vertex and the edges in S are vertex-disjoint.

Proof idea:

- there is a k-edge cut between any pair of high-degree vertices
- use submodularity of vertex degree
 - if $d(X_1) = k$ and $d(X_2) = k$, and $|X_1 \cup X_2| < n$, then $d(X_1 \cap X_2) = k$ by k-connectivity and submodularity
- the edges in the cut are vertex-disjoint by k-connectivity

There exists a k-edge cut S separating X from Y where X has precisely one high-degree vertex and the edges in S are vertex-disjoint.

Proof idea:

- there is a k-edge cut between any pair of high-degree vertices
- use submodularity of vertex degree
 - if $d(X_1) = k$ and $d(X_2) = k$, and $|X_1 \cup X_2| < n$, then $d(X_1 \cap X_2) = k$ by k-connectivity and submodularity
- the edges in the cut are vertex-disjoint by k-connectivity

G is not *k*-colourable if and only if for every *k*-colouring ϕ_X of *G*[*X*] and every *k*-colouring ϕ_Y of *G*[*Y*], the x_i 's are all the same colour in ϕ_X and the y_i 's are all different colours in ϕ_Y , or vice versa.

Proof:

- Construct an auxiliary graph from the colourings ϕ_X and ϕ_Y such that G is k-colourable iff the auxiliary graph is k-colourable
 - vertices are the colour classes of $\phi_X | \{x_1, \dots, x_k\}$ and $\phi_Y | \{y_1, \dots, y_k\}$
 - each set of colour classes is a clique
 - an edge between colour classes u and v if φ_X(x_i) = u and φ_Y(y_i) = v for some i ∈ [k]
- Can show this graph has maximum degree *k* and apply Brooks' theorem

G is not *k*-colourable if and only if for every *k*-colouring ϕ_X of *G*[*X*] and every *k*-colouring ϕ_Y of *G*[*Y*], the x_i 's are all the same colour in ϕ_X and the y_i 's are all different colours in ϕ_Y , or vice versa.

Proof:

- Construct an auxiliary graph from the colourings ϕ_X and ϕ_Y such that G is k-colourable iff the auxiliary graph is k-colourable
 - vertices are the colour classes of $\phi_X | \{x_1, \dots, x_k\}$ and $\phi_Y | \{y_1, \dots, y_k\}$
 - each set of colour classes is a clique
 - an edge between colour classes u and v if φ_X(x_i) = u and φ_Y(y_i) = v for some i ∈ [k]
- Can show this graph has maximum degree k and apply Brooks' theorem

3-COLOURING complexity: results

k-COLOURING complexity, $k \ge 4$

For fixed $k \ge 4$,

- is *k*-COLOURING, restricted to graphs with maximal local connectivity *k*, NP-hard?
- is *k*-COLOURING, restricted to *k*-connected graphs with maximal local connectivity *k*, in P?
- is *k*-COLOURING, restricted to graphs with maximal local edge-connectivity *k*, in P?

Nick Brettell (MTA SZTAKI) Colouring with constraints on connectivity

< (17) > < (27 >)