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Introduction

We are interesting in (proper) vertex colouring
Let k be a fixed integer at least 3

k-colourability
Input: a graph G
Question: is there a k-colouring of G?

k-colourability is well known to be NP-complete for any fixed
k ≥ 3

Motivation:
Are there (interesting) classes defined in terms of connectivity for
which k-colourability is in P?
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Connectivity preliminaries

The local connectivity κ(x , y) of distinct vertices x and y in a graph
is the maximum number of internally disjoint paths between x and y
An xy -vertex cut is a subset Z of V (G) such that x and y are in
different components of G − Z

Theorem (Menger, 1927)
Let x and y be non-adjacent vertices. Then the minimum number of
vertices in an xy-vertex cut is equal to κ(x , y).

A graph G is k-connected if it has at least 2 vertices and κ(x , y) ≥ k
for all distinct x , y ∈ V (G)
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Brooks’ Theorem

Theorem (Brooks, 1941)
For any connected graph G with maximum degree k,

if G is not a complete graph nor an odd cycle, then G is k-colourable
otherwise, G is not k-colourable, but is (k + 1)-colourable.

k-colourability is polynomial for graphs with maximum degree k
by Brooks’ Theorem
The classes we will consider contain the class of (k-connected) graphs
with maximum degree at most k
e.g. minimally k-connected graphs
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Minimally k-connected graphs

A graph is minimally k-connected if it is k-connected, but is no longer
k-connected after the removal of any edge
We say G is k-chord-free if κ(x , y) ≤ k for all adjacent x , y ∈ V (G)

Lemma
A graph is minimally k-connected iff it is k-connected and k-chord-free.
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A hierarchy of connectivity classes

G is k-chord-free
if κ(x , y) ≤ k for adjacent x , y ∈ V (G).
G has maximal local connectivity k
if κ(x , y) ≤ k for every x , y ∈ V (G).
G has maximal local edge-connectivity k
if λ(x , y) ≤ k for every x , y ∈ V (G),

where the local edge-connectivity λ(x , y) of distinct vertices x and y is the
maximum number of edge-disjoint paths between x and y .

Each of these classes is closed under taking subgraphs.

We can also consider the k-connected subclasses of each. In particular:
G is minimally k-connected if it is k-connected and k-chord-free.
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A hierarchy of connectivity classes (2)
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Graphs with maximal local edge-connectivity 3

What graphs are in the class?
all cubic graphs
all graphs with one vertex of degree more than 3 (e.g. wheels)
some graphs with arbitrarily many vertices of degree more than 3

Example
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k-chord-free graphs are (k + 1)-colourable

Theorem (Mader, 1973)
Let G be a graph with at least one edge. Then there exists an edge
xy ∈ E (G) such that κ(x , y) = min{d(x), d(y)}.

Corollary
If G is a k-chord-free graph, then G has a vertex of degree at most k.

Corollary
If G is a k-chord-free graph, then G is (k + 1)-colourable.

The interesting question is whether G is k-colourable.
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3-colouring complexity
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Ĉ3
2

C3
1(maximal local edge-connectivity 3)

Ĉ3
1

C3
0(subcubic)

Ĉ3
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Ĉ3
1

C3
0(subcubic)

Ĉ3
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3-connected graphs with maximal local connectivity 3

Proposition (ABHMT)
A 3-connected graph with maximal local connectivity 3 has maximal local
edge-connectivity 3.

For k ≥ 4, a k-connected graph with maximal local connectivity k
may have maximal local edge-connectivity strictly more than k
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3-colouring complexity: results
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Ĉ3
1 = Ĉ3
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Colourability of minimally k-connected graphs

Proposition (ABHMT)
For fixed k ≥ 3, k-colourability remains NP-complete when restricted
to minimally k-connected graphs.

k-uniform hypergraph k-colourability is NP-complete for
k ≥ 3
Reduce to k-colourability on minimally k-connected graphs
Gadgets:

Kk

...
...

(for each hyperedge)
Kk−1,k

...
... ...

(to ensure k-connected)
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Graphs with maximal local connectivity k

Proposition (ABHMT)
For fixed k ≥ 3, the problem of deciding if a (k − 1)-connected graph with
maximal local connectivity k is 3-colourable is NP-complete.

Proof idea for k = 3.
Reduce 3-colourability (for any graph) to 3-colourability for
2-connected graphs with maximal local connectivity 3.

Replace each high-degree
vertex with a gadget like:

p1

p2

p3

p4
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3-colouring complexity: state of play
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Graphs with maximal local edge-connectivity k

Proposition (ABHMT, 2015)
k-colouring, restricted to k-connected graphs with maximal local
edge-connectivity k, is in P.

In fact. . .

Theorem (ABHMT, 2015)
Let k ≥ 3. A k-connected graph with maximal local edge-connectivity k is
k-colourable if and only if it is not a complete graph nor an odd wheel.

Proof to follow.
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Graphs with maximal local edge-connectivity 3

When k = 3, we can drop the 3-connectivity requirement:

Theorem (ABHMT)
Let G be a graph with maximal local edge-connectivity 3. Then G is
3-colourable if and only if each block of G cannot be obtained from odd
wheels by performing Hajós joins.

Hajós join:

u1

v1

u2

v2

→

v1

u

v2

Corollary
3-colouring on graphs with maximal local edge-connectivity 3 is in P.
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The proof (k-connected case)

Theorem (ABHMT)
Let k ≥ 3. A k-connected graph G with maximal local edge-connectivity k
is k-colourable if and only if it is not a complete graph nor an odd wheel.

There are three ingredients to the proof:
1 If a k-connected graph has at most one vertex of degree more than k

and no dominating vertices, then it is k-colourable
2 If G has more than one high-degree vertex, there is a k-edge cut S

separating X from Y where X has one high-degree vertex
3 G is k-colourable if and only if there are colourings of G [X ] and G [Y ]

where the colours given to the vertices incident with S are not all the
same in one and all different in the other
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Ingredient 1: a variant of Brooks’ theorem

Lemma
Let G be a 3-connected graph with at most one vertex of degree more
than k, and no dominating vertices. Then G is k-colourable.

Lovász (1975) gave a short proof of Brooks’ theorem: can easily adapt
that proof in order to prove this lemma.
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Ingredient 2

Lemma
There exists a k-edge cut S separating X from Y where X has precisely
one high-degree vertex and the edges in S are vertex-disjoint.

Proof idea:
there is a k-edge cut between any pair of high-degree vertices
use submodularity of vertex degree

if d(X1) = k and d(X2) = k, and |X1 ∪ X2| < n, then d(X1 ∩ X2) = k
by k-connectivity and submodularity

the edges in the cut are vertex-disjoint by k-connectivity

Nick Brettell (MTA SZTAKI) Colouring with constraints on connectivity GROW 2015



Ingredient 2

Lemma
There exists a k-edge cut S separating X from Y where X has precisely
one high-degree vertex and the edges in S are vertex-disjoint.

Proof idea:
there is a k-edge cut between any pair of high-degree vertices
use submodularity of vertex degree

if d(X1) = k and d(X2) = k, and |X1 ∪ X2| < n, then d(X1 ∩ X2) = k
by k-connectivity and submodularity

the edges in the cut are vertex-disjoint by k-connectivity

Nick Brettell (MTA SZTAKI) Colouring with constraints on connectivity GROW 2015



Ingredient 3

Lemma
G is not k-colourable if and only if for every
k-colouring φX of G [X ] and every k-colouring φY of
G [Y ], the xi ’s are all the same colour in φX and the
yi ’s are all different colours in φY , or vice versa. X Y

...
...

x1

x2

xk

y1

y2

yk

Proof:
Construct an auxiliary graph from the colourings φX and φY such
that G is k-colourable iff the auxiliary graph is k-colourable

vertices are the colour classes of φX |{x1, . . . , xk} and φY |{y1, . . . , yk}
each set of colour classes is a clique
an edge between colour classes u and v if φX (xi) = u and φY (yi) = v
for some i ∈ [k]

Can show this graph has maximum degree k and apply Brooks’
theorem
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3-colouring complexity: results
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k-colouring complexity, k ≥ 4
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Ĉk
0

NP-hard

P

Nick Brettell (MTA SZTAKI) Colouring with constraints on connectivity GROW 2015



Open questions

For fixed k ≥ 4,
is k-colouring, restricted to graphs with maximal local connectivity
k, NP-hard?
is k-colouring, restricted to k-connected graphs with maximal
local connectivity k, in P?
is k-colouring, restricted to graphs with maximal local
edge-connectivity k, in P?
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Thank you for your attention.
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