Parameterized Complexity Dichotomy for (r, ℓ)-Vertex Deletion

Julien Baste ${ }^{1}$ Luerbio Faria ${ }^{2}$
Sulamita Klein ${ }^{3}$ Ignasi Sau ${ }^{1}$

${ }^{1}$ AIGCo project team, CNRS, LIRMM, Montpellier, France
${ }^{2}$ FFP, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
${ }^{3}$ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Outline of the talk

(1) (r, ℓ)-graphs
(2) (r, ℓ)-Vertex Deletion
(3) Independent (r, ℓ)-Vertex Deletion

Next section is...

(1) (r, ℓ)-graphs
(2) (r, ℓ)-Vertex Deletion

3 Independent (r, ℓ)-Vertex Deletion

Definition

An (r, ℓ)-graph is a graph whose vertex set can be partition into r independent sets and ℓ cliques.

Definition

An (r, ℓ)-graph is a graph whose vertex set can be partition into r independent sets and ℓ cliques.
(1,0)-graphs Independent sets.
(0,1)-graphs Cliques.

Definition

An (r, ℓ)-graph is a graph whose vertex set can be partition into r independent sets and ℓ cliques.
(1,0)-graphs Independent sets.
(0,1)-graphs Cliques.
(2,0)-graphs Bipartite graphs.
(1,1)-graphs Split graphs.
($r, 0$)-graphs r-colorable graphs.

Theorem

Let r and ℓ be two fixed integers. Let $G=(V, E)$ be a graph.

- If $\max \{r, \ell\}<3$ then we can check if G is an (r, ℓ)-graph and construct an (r, ℓ)-partition in polynomial time.
- Otherwise the recognition problem is NP-complete.

Next section is...

(1) (r, ℓ)-graphs
(2) (r, ℓ)-Vertex Deletion
(3) Independent (r, ℓ)-Vertex Deletion
(r, ℓ)-Vertex Deletion
Input: A graph $G=(V, E)$, an integer k.
Parameter: k.
Output: A set $S \subseteq V$ such that:

- $|S| \leq k$
- $G \backslash S$ is a (r, ℓ)-graph.

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				
1				p-NP-c
0				p-NP-c
				p-NP-c
r	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				
1				p-NP-c
0	P			p-NP-c
				p-NP-c
r	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				
	$\overline{\mathrm{VC}}$			
1	1.27^{k}			p-NP-c-c
0	P	VC		
1.27^{k}		p-NP-c		
ℓr	0	1	2	3

[Chen, Kanj, Xia 10]

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
	$\overline{\mathrm{OCT}}$			
2	2.31^{k}			p-NP-c
	$\overline{\mathrm{VC}}$			
1	1.27^{k}			p-NP-c
		VC	OCT	
0	P	1.27^{k}	2.31^{k}	p-NP-c
ℓr	0	1	2	3

[Reed, Smith, Vetta 04]

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
	$\overline{\mathrm{OCT}}$			
2	2.31^{k}			p-NP-c
	$\overline{\mathrm{VC}}$	SPLIT D.		
1	1.27^{k}	2^{k}		p-NP-c
		VC	OCT	
0	P	1.27^{k}	2.31^{k}	p-NP-c
ℓr	0	1	2	3

[Foldes, Hammer 77]

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
	$\overline{\mathrm{OCT}}$			
2	2.31^{k}	NP-h	NP-h	p-NP-c
	$\overline{\mathrm{VC}}$	SPLIT D.		
1	1.27^{k}	2^{k}	NP-h	p-NP-c
		VC	OCT	
0	P	1.27^{k}	2.31^{k}	p-NP-c
$\ell r r$	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
	$\overline{\mathrm{OCT}}$			
2	2.31^{k}	3.31^{k}	3.31^{k}	p-NP-c
	$\overline{\mathrm{VC}}$	SPLIT D.		
1	1.27^{k}	2^{k}	3.31^{k}	p-NP-c
		VC	OCT	
0	P	1.27^{k}	2.31^{k}	p-NP-c
$\ell r r$	0	1	2	3

[B., Faria, Klein, Sau on arXiv (abs/1504.05515) 21/04/2015]
[Kolay, Panolan on arXiv (abs/1504.08120) 30/04/2015]

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
	$\overline{\mathrm{OCT}}$			
2	2.31^{k}	3.31^{k}	3.31^{k}	p-NP-c
	$\overline{\mathrm{VC}}$	SPLIT D.		
1	1.27^{k}	2^{k}	3.31^{k}	p-NP-c
		VC	OCT $^{\prime}$	
0	P	1.27^{k}	2.31^{k}	p-NP-c
$\ell r r$	0	1	2	3

Theorem

There is no algorithm running in time $2^{o(k)} \cdot n^{O(1)}$ for solving (r, ℓ)-Vertex Deletion, for $r>0$ or $\ell>0$, unless the ETH fails.
(2, 1)-Vertex Deletion
Input: A graph $G=(V, E)$, an integer k.
Parameter: k.
Output: A set $S \subseteq V$ such that:

- $|S| \leq k$
- $G \backslash S$ is a $(2,1)$-graph.

Definition

Let $G=(V, E)$ be a graph. An (r, ℓ)-partition of G is a bipartition (R, L) of V such that R is a $(r, 0)$-graph and L is a $(0, \ell)$-graph.

Lemma

Let r and ℓ be two fixed integers, and let (R, L) and $\left(R^{\prime}, L^{\prime}\right)$ be two (r, ℓ)-partitions of a graph G. Then we can find $L_{\text {sel }} \subseteq R$ and $R_{\text {sel }} \subseteq L$ both of size at most $r \cdot \ell$ such that $R^{\prime}=\left(R \backslash L_{\text {sel }}\right) \cup R_{\text {sel }}$ and $L^{\prime}=\left(L \backslash R_{\text {sel }}\right) \cup L_{\text {sel }}$.

Lemma

Let r and ℓ be two fixed integers, and let (R, L) and $\left(R^{\prime}, L^{\prime}\right)$ be two (r, ℓ)-partitions of a graph G. Then we can find $L_{\text {sel }} \subseteq R$ and $R_{\text {sel }} \subseteq L$ both of size at most $r \cdot \ell$ such that $R^{\prime}=\left(R \backslash L_{\text {sel }}\right) \cup R_{\text {sel }}$ and $L^{\prime}=\left(L \backslash R_{\text {sel }}\right) \cup L_{\text {sel }}$.

Lemma

Let r and ℓ be two fixed integers, and let (R, L) and $\left(R^{\prime}, L^{\prime}\right)$ be two (r, ℓ)-partitions of a graph G. Then we can find $L_{\text {sel }} \subseteq R$ and $R_{\text {sel }} \subseteq L$ both of size at most $r \cdot \ell$ such that $R^{\prime}=\left(R \backslash L_{\text {sel }}\right) \cup R_{\text {sel }}$ and $L^{\prime}=\left(L \backslash R_{\text {sel }}\right) \cup L_{\text {sel }}$.

Lemma

Let r and ℓ be two fixed integers, and let (R, L) and $\left(R^{\prime}, L^{\prime}\right)$ be two (r, ℓ)-partitions of a graph G. Then we can find $L_{\text {sel }} \subseteq R$ and $R_{\text {sel }} \subseteq L$ both of size at most $r \cdot \ell$ such that $R^{\prime}=\left(R \backslash L_{\text {sel }}\right) \cup R_{\text {sel }}$ and $L^{\prime}=\left(L \backslash R_{\text {sel }}\right) \cup L_{\text {sel }}$.

Lemma

Let r and ℓ be two fixed integers, and let (R, L) and $\left(R^{\prime}, L^{\prime}\right)$ be two (r, ℓ)-partitions of a graph G. Then we can find $L_{\text {sel }} \subseteq R$ and $R_{\text {sel }} \subseteq L$ both of size at most $r \cdot \ell$ such that $R^{\prime}=\left(R \backslash L_{\text {sel }}\right) \cup R_{\text {sel }}$ and $L^{\prime}=\left(L \backslash R_{\text {sel }}\right) \cup L_{\text {sel }}$.

A similar lemma was proved by Feder, Hell, Klein, and Motwani in 2003.

Disjoint (2,1)-Vertex Deletion

Input: A graph $G=(V, E)$, an integer k, and a set $S \subseteq V$ such that:

- $|S| \leq k+1$
- $G \backslash S$ is a (2,1)-graph.

Parameter: k.
Output: A set $S^{\prime} \subseteq V \backslash S$ such that:

- $\left|S^{\prime}\right| \leq k$
- $G \backslash S^{\prime}$ is a $(2,1)$-graph.

Lemma

If Disjoint $(2,1)$-Vertex Deletion can be solved in time $c^{k} \cdot n^{\mathcal{O}(1)}$ for some constant c, then (2,1)-VERTEX DELETion can also be solved in time $(c+1)^{k} \cdot n^{\mathcal{O}(1)}$.

The iterative compression technique was introduced by Reed, Smith, and Vetta for the algorithm for Odd Cycle Transversal.

(r, $\ell)$-graphs

(R^{\prime}, L^{\prime}) is an (r, ℓ)-partition

$v \backslash S$

$\left(R^{\prime}, L^{\prime}\right)$ is an (r, ℓ)-partition

$v \backslash S$
$\left(R_{1}, L_{1}\right)$ is an (r, ℓ)-partition
S^{\prime}

Find (r, ℓ)-partitions n^{4}

Find (r, ℓ)-partitions n^{4}

(r, ℓ)-graphs

Find (r, ℓ)-partitions n^{4} $\overline{V C}$ $1.27^{k} \cdot n^{\mathcal{O}(1)}$

OCT
$2.31^{k} \cdot n^{\mathcal{O}(1)}$

Next section is...

(1) (r, ℓ)-graphs
(2) (r, ℓ)-VERTEX DELETION
(3) Independent (r, ℓ)-Vertex Deletion

Independent (r, ℓ)-Vertex Deletion
Input: A graph $G=(V, E)$, an integer k.
Parameter: k.
Output: An independent set $S \subseteq V$ of size at most k such that $G \backslash S$ is an (r, ℓ)-graph.

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0				
				p-NP-c
r	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0	P		IOCT $2^{O\left(k^{2}\right)}$	p-NP-c

[Marx, O'Sullivan, Razgon 13]

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	P	P	NP-h	p-NP-c
1	P	P	NP-h	p-NP-c
0	P	P	$\mathbf{2}^{2^{O\left(k^{2}\right)}}$	p-NP-c
$\ell r r$	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	P	P	$2^{2^{O\left(k^{2}\right)}}$	p-NP-c
1	P	P	$2^{2 O\left(k^{2}\right)}$	p-NP-c
0	P	IVC P	IOCT $2^{O\left(k^{2}\right)}$	p-NP-c
$\ell \quad r$	0	1	2	3

Theorem
 Independent Odd Cycle Transversal is FPT when parameterized by the size of the solution.

[Marx, O'sullivan, Razgon 15]

Theorem

Independent Odd Cycle Transversal is FPT when parameterized by the size of the solution.
[Marx, O'sullivan, Razgon 15]

Theorem

Independent Odd Cycle Transversal can be solved in $2^{2^{\mathcal{O}\left(k^{2}\right)}} \cdot n^{\mathcal{O}(1)}$ where k is the size of the solution.

Theorem

Independent (2, 1)-vertex Deletion and Independent (2, 2)-Vertex Deletion are FPT.

Find (r, ℓ)-partitions n^{4}

Find (r, ℓ)-partitions n^{4}
$L_{0} \cup L_{2}$ be a clique n $\mathrm{IOCT}_{2^{\mathcal{O}\left(k^{2}\right)}} \cdot n^{\mathcal{O}(1)}$

Find (r, ℓ)-partitions n^{4}
$L_{0} \cup L_{2}$ be a clique
n
$\mathrm{IOCT}^{2\left(k^{2}\right)} \cdot n^{\mathcal{O}(1)}$
$2^{\mathrm{I}^{(1)}}$
$\mathrm{I}(2,1)-\mathrm{VD}$
$2^{2 \mathcal{O}\left(k^{2}\right)} \cdot n^{\mathcal{O}(1)}$

Further research

- Can we improve the running time for Independent (r, ℓ)-Vertex Deletion?

Further research

- Can we improve the running time for Independent (r, ℓ)-Vertex Deletion?
- Does a polynomial kernel for (r, ℓ)-Vertex Deletion exist?
- There is a randomized polynomial kernel for Odd Cycle Transversal using matroids.
[Kratsch, Wahlström 14]

Further research

- Can we improve the running time for Independent (r, ℓ)-Vertex Deletion?
- Does a polynomial kernel for (r, ℓ)-Vertex Deletion exist?
- There is a randomized polynomial kernel for Odd Cycle Transversal using matroids.
[Kratsch, Wahlström 14]
- Is (2, 2)-Edge Deletion FPT?
- (2, 1)-Edge Deletion and (1,2)-Edge Deletion are FPT.
[Kolay, Panolan 15]

Thanks

