Parameterized Complexity Dichotomy for (r, ℓ) -Vertex Deletion

<u>Julien Baste</u>¹ Luerbio Faria² Sulamita Klein³ Ignasi Sau¹

¹AIGCo project team, CNRS, LIRMM, Montpellier, France

²FFP, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.

³Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Outline of the talk

- **2** (r, ℓ) -Vertex Deletion
- **3** INDEPENDENT (r, ℓ) -VERTEX DELETION

Next section is...

2 (r, ℓ) -VERTEX DELETION

3 INDEPENDENT (r, ℓ) -VERTEX DELETION

Definition

An (r, ℓ) -graph is a graph whose vertex set can be partition into r independent sets and ℓ cliques.

Definition

An (r, ℓ) -graph is a graph whose vertex set can be partition into r independent sets and ℓ cliques.

(1,0)-graphs Independent sets.(0,1)-graphs Cliques.

Definition

An (r, ℓ) -graph is a graph whose vertex set can be partition into r independent sets and ℓ cliques.

(1,0)-graphs Independent sets.

(0,1)-graphs Cliques.

(2,0)-graphs Bipartite graphs.

(1,1)-graphs Split graphs.

(r,0)-graphs *r*-colorable graphs.

Theorem

Let r and ℓ be two fixed integers. Let G = (V, E) be a graph.

- If max{r, ℓ} < 3 then we can check if G is an (r, ℓ)-graph and construct an (r, ℓ)-partition in polynomial time.
- Otherwise the recognition problem is NP-complete.

[Brandstädt 96]

Bibliography (r, ℓ) -partition Iterative compression

Next section is...

2 (r, ℓ) -Vertex Deletion

3 INDEPENDENT (r, ℓ) -VERTEX DELETION

```
(r, \ell)-VERTEX DELETION

Input: A graph G = (V, E), an integer k.

Parameter: k.

Output: A set S \subseteq V such that:

• |S| \le k

• G \setminus S is a (r, \ell)-graph.
```

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	
Independent (r, ℓ) -Vertex Deletion	

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0				p-NP-c
l r	0	1	2	3

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	(r, ℓ) -partition
Independent (r, ℓ) -Vertex Deletion	Iterative compression

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0	Р			p-NP-c
l r	0	1	2	3

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	(r, ℓ) -partition
Independent (r, ℓ) -Vertex Deletion	Iterative compression

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1	VC 1.27 ^k			p-NP-c
0	Р	VC 1.27 ^k		p-NP-c
l r	0	1	2	3

[Chen, Kanj, Xia 10]

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	
Independent (r, ℓ) -Vertex Deletion	

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	$\frac{\overline{\text{OCT}}}{2.31^k}$			p-NP-c
1	VC 1.27 ^k			p-NP-c
0	Р	VC 1.27 ^k	OCT 2.31 ^k	p-NP-c
l r	0	1	2	3

[Reed, Smith, Vetta 04]

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	(r, ℓ) -partition
Independent (r, ℓ) -Vertex Deletion	Iterative compression

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	$\begin{array}{c} \overline{\text{OCT}} \\ 2 \ 31^{k} \end{array}$			n ND c
	VC	Split D.		p-INF-C
1	1.27 ^k	2 ^k		p-NP-c
		VC	OCT	
		1 07k	221k	
0	P	1.27	2.31	p-NP-c

[Foldes, Hammer 77]

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	(r, ℓ) -partition
Independent (r, ℓ) -Vertex Deletion	Iterative compression

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	$\frac{\overline{\text{OCT}}}{2.31^k}$	NP-h	NP-h	p-NP-c
	VC	Split D.		
1	1.27 ^k	2 ^k	NP-h	p-NP-c
1 0	1.27 ^k P	2 ^k VC 1.27 ^k	NP-h OCT 2.31 ^k	p-NP-c p-NP-c

(r, ℓ) -graphs	Bibliography
(r, ℓ) -Vertex Deletion	(r, ℓ) -partition
Independent (r, ℓ) -Vertex Deletion	Iterative compression

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	OCT 2 31 ^k	3 31 ^k	3 31 ^k	n-NP-c
-	VC	Split D.	0.01	
1	1.27 ^k	2 ^k	3.31 ^k	p-NP-c
1	1.27 ^k	2 ^k VC	3.31 ^k OCT	p-NP-c
1 0	1.27 ^k P	2 ^k VC 1.27 ^k	3.31 ^k OCT 2.31 ^k	p-NP-c p-NP-c

[B., Faria, Klein, Sau on arXiv (abs/1504.05515) 21/04/2015]

[Kolay, Panolan on arXiv (abs/1504.08120) 30/04/2015]

Bibliography (r, ℓ) -partition Iterative compression

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	OCT 2.31 ^k	3.31 ^k	3.31 ^k	p-NP-c
1	VC 1.27 ^k	Split D. 2 ^k	3.31 ^k	p-NP-c
		VC	OCT	
0	Р	1.27 ^k	2.31 ^k	p-NP-c

Theorem

There is no algorithm running in time $2^{o(k)} \cdot n^{O(1)}$ for solving (r, ℓ) -VERTEX DELETION, for r > 0 or $\ell > 0$, unless the ETH fails.

```
(2,1)-VERTEX DELETION

Input: A graph G = (V, E), an integer k.

Parameter: k.

Output: A set S \subseteq V such that:

• |S| \leq k

• G \setminus S is a (2,1)-graph.
```

Bibliography (r, ℓ) -partition Iterative compression

Definition

Let G = (V, E) be a graph. An (r, ℓ) -partition of G is a bipartition (R, L) of V such that R is a (r, 0)-graph and L is a $(0, \ell)$ -graph.

Bibliography (r, ℓ) -partition Iterative compression

Lemma

Bibliography (r, ℓ) -partition Iterative compression

Lemma

Let r and ℓ be two fixed integers, and let (R, L) and (R', L') be two (r, ℓ) -partitions of a graph G. Then we can find $L_{sel} \subseteq R$ and $R_{sel} \subseteq L$ both of size at most $r \cdot \ell$ such that $R' = (R \setminus L_{sel}) \cup R_{sel}$ and $L' = (L \setminus R_{sel}) \cup L_{sel}$.

A similar lemma was proved by Feder, Hell, Klein, and Motwani in 2003.

DISJOINT (2, 1)-VERTEX DELETION **Input:** A graph G = (V, E), an integer k, and a set $S \subseteq V$ such that:

•
$$|S| \le k + 1$$

•
$$G \setminus S$$
 is a (2,1)-graph.

Parameter: k.

Output: A set $S' \subseteq V \setminus S$ such that:

•
$$|S'| \leq k$$

•
$$G \setminus S'$$
 is a (2,1)-graph.

Bibliography (r, ℓ) -partition Iterative compression

Lemma

If DISJOINT (2,1)-VERTEX DELETION can be solved in time $c^k \cdot n^{\mathcal{O}(1)}$ for some constant c, then (2,1)-VERTEX DELETION can also be solved in time $(c + 1)^k \cdot n^{\mathcal{O}(1)}$.

The iterative compression technique was introduced by Reed, Smith, and Vetta for the algorithm for $\rm ODD\ CYCLE\ TRANSVERSAL.$

Bibliography (r, ℓ) -partition Iterative compression

S

 $V \setminus S$

Bibliography (r, ℓ) -partition Iterative compression

S

 $V \setminus S$

Bibliography (r, ℓ) -partition Iterative compression

Bibliography (r, ℓ) -partition Iterative compression

S

 (r, ℓ) -graphs (r, ℓ)-Vertex Deletion (r,

Bibliography (r, ℓ) -partition Iterative compression

Bibliography (r, ℓ) -partition Iterative compression

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bibliography (r, ℓ) -partition Iterative compression

Bibliography (r, ℓ) -partition Iterative compression

S

Bibliography (r, ℓ) -partition Iterative compression

Find (r, ℓ) -partitions n^4

S

Bibliography (r, ℓ) -partition Iterative compression

Find (r, ℓ) -partitions n^4

 (r, ℓ) -graphs Bibliography (r, ℓ) -VERTEX DELETION (r, ℓ) -Partition INDEPENDENT (r, ℓ) -VERTEX DELETION Iterative compression

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 のへで 14/22 (r, ℓ) -graphsBibliography (r, ℓ) -VERTEX DELETION (r, ℓ) -partitionINDEPENDENT (r, ℓ) -VERTEX DELETIONIterative compression

 $\begin{array}{ll} (r,\ell)\text{-graphs} & \text{Bibliography} \\ (r,\ell)\text{-VERTEX DELETION} & (r,\ell)\text{-partition} \\ \text{INDEPENDENT} (r,\ell)\text{-VERTEX DELETION} & \text{Iterative compression} \end{array}$

Bibliography (r, ℓ) -partition Iterative compression

Bibliography (r, ℓ) -partition Iterative compression

Next section is...

(1) (r, ℓ) -graphs

(2) (r, ℓ) -Vertex Deletion

3 INDEPENDENT (r, ℓ) -VERTEX DELETION

INDEPENDENT (r, ℓ) -VERTEX DELETION **Input:** A graph G = (V, E), an integer k. **Parameter:** k. **Output:** An independent set $S \subseteq V$ of size at most k such that $G \setminus S$ is an (r, ℓ) -graph.

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0				p-NP-c
l r	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0	Р			p-NP-c
l r	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2				p-NP-c
1				p-NP-c
0	Р		$\frac{\text{IOCT}}{2^{2^{O(k^2)}}}$	p-NP-c
l r	0	1	2	3

[Marx, O'Sullivan, Razgon 13]

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	Р	Р	NP-h	p-NP-c
1	Р	Р	NP-h	p-NP-c
		IVC	IOCT	
0	Р	Р	$2^{2^{O(k^2)}}$	p-NP-c
l r	0	1	2	3

3	p-NP-c	p-NP-c	p-NP-c	p-NP-c
2	Р	Р	$2^{2^{O(k^2)}}$	p-NP-c
1	Р	Р	$2^{2^{O(k^2)}}$	p-NP-c
		IVC	IOCT	
0	Р	Р	$2^{2^{O(k^2)}}$	p-NP-c
l r	0	1	2	3

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

Theorem

INDEPENDENT ODD CYCLE TRANSVERSAL *is FPT when parameterized by the size of the solution.*

[Marx, O'sullivan, Razgon 15]

Theorem

INDEPENDENT ODD CYCLE TRANSVERSAL *is FPT when parameterized by the size of the solution.*

[Marx, O'sullivan, Razgon 15]

Theorem

INDEPENDENT ODD CYCLE TRANSVERSAL can be solved in $2^{2^{\mathcal{O}(k^2)}} \cdot n^{\mathcal{O}(1)}$ where k is the size of the solution.

Theorem

INDEPENDENT (2, 1)-VERTEX DELETION and INDEPENDENT (2, 2)-VERTEX DELETION are FPT.

S

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

Find (r, ℓ) -partitions n^4

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

20 / 22

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

<ロト<団ト<三ト<三ト<三ト<三ト<三、 20/22

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

20 / 22

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

20 / 22

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 20 / 22 (r, ℓ) -graphs (r, ℓ) -Vertex Deletion INDEPENDENT (r, ℓ) -Vertex Deletion

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

Further research

• Can we improve the running time for INDEPENDENT (*r*, *l*)-VERTEX DELETION?

Further research

- Can we improve the running time for INDEPENDENT (r, ℓ) -VERTEX DELETION?
- Does a polynomial kernel for (r, ℓ) -VERTEX DELETION exist?
 - There is a randomized polynomial kernel for ODD CYCLE TRANSVERSAL using matroids. [Kratsch, Wahlström 14]

Further research

- Can we improve the running time for INDEPENDENT (r, ℓ) -VERTEX DELETION?
- Does a polynomial kernel for (r, ℓ) -VERTEX DELETION exist?
 - There is a randomized polynomial kernel for ODD CYCLE TRANSVERSAL using matroids. [Kratsch, Wahlström 14]
- Is (2,2)-EDGE DELETION FPT?
 - (2, 1)-EDGE DELETION and (1, 2)-EDGE DELETION are FPT. [Kolay, Panolan 15]

INDEPENDENT ODD CYCLE TRANSVERSAL Consequence for (r, ℓ) -graphs

Thanks

<ロト < 部 > < 言 > < 言 > 言 の Q C 22 / 22