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Immersion

An immersion µ of H in D satisfies

∀u ∈ VH , µ(u) is a distinct vertex of VD

∀uv ∈ EH , µ(uv) ∈ {µ(u)→∗ µ(v)}
∀uv , u′v ′ ∈ EH , µ(uv) ∩ µ(u′v ′) = ∅

Vertex injection

Arc injection

Disjoint paths

R

V

B

µ(R)

µ(V )

µ(B)

Immersion
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Vertex ordering and cuts

π = (vπ(1), ..., vπ(n)) is an ordering of V .
π[i ] contains the first i vertices of π

The i th cut of π is: Eπ[i ] = {uv ∈ E | u ∈ V \ π[i ] and v ∈ π[i ]}

uv ∈ Eπ[i ] is a backward arc for π since v <π u.

v1 v2 v3 v4

Eid [2] = Eid [3] = {v4v2}

v1 v2 v3 v4

v1 - 0 0 0
v2 1 - 0 1
v3 1 1 - 0
v4 1 0 1 -
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Cutwidth

Cutwidth of π: cw(D, π) = max
0≤i≤n

|Eπ[i ]|

Cutwidth of D: cw(D) = min
π

cw(D, π)

v1 v2 v3 v4

cw(D, id) = 1

v1 v2 v3 v4

v1 - 0 0 0
v2 1 - 0 1
v3 1 1 - 0
v4 1 0 1 -
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Some Properties

Cutwidth-0 = Directed Acyclic Graph

Cutwidth ∈ NP-complete

Cutwidth is closed under Immersion
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Semi-complete digraphs and tournaments

D is semi-complete if:

it is simple (no self-loop, no multiple arc)

for every distinct u, v ∈ V , uv or vu is in E .

v1

v2

v3

v4

v1 v2 v3 v4

v1 - 0 1 0
v2 1 - 0 1
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Strong known results

Chudnovsky and Seymour 2011

Immersion is WQO for semi-complete digraphs.

Chudnovsky, Fradkin and Seymour 2012

Given a fixed digraph H and given a semi-complete D as input,
testing whether there exists an immersion of H in D is FPT with
parameter |V (H)|.
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Cutwidth in Semi-Complete

π ∈ V− if ∀u, v ∈ V , d−(u) < d−(v)⇒ u <π v .

Alon, Lokshtanov and Saurabh 2009; Pilipczuk 2013

π ∈ V− ⇒ cw(D, π) ≤ 16cw(D)2 + 10cw(D) + 1

Cutwidth in Semi-complete ∈ FPT sub-exponential

Cutwidth in Semi-Complete ∈ NP-Hard?
And-Composition + NP-Hard ⇒ no polynomial kernel

Linear approximation?

k(k−1)
2

|Eπ[k]|

Other arcs

∑k
i=1 d

−(vπ(i))

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 12 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Semi-complete and tournaments
Strong known results
Computing Cutwidth
Certificate and Obstacle

Cutwidth in Semi-Complete

π ∈ V− if ∀u, v ∈ V , d−(u) < d−(v)⇒ u <π v .

Alon, Lokshtanov and Saurabh 2009; Pilipczuk 2013

π ∈ V− ⇒ cw(D, π) ≤ 16cw(D)2 + 10cw(D) + 1

Cutwidth in Semi-complete ∈ FPT sub-exponential

Cutwidth in Semi-Complete ∈ NP-Hard?
And-Composition + NP-Hard ⇒ no polynomial kernel

Linear approximation?

k(k−1)
2

|Eπ[k]|

Other arcs

∑k
i=1 d

−(vπ(i))

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 12 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Semi-complete and tournaments
Strong known results
Computing Cutwidth
Certificate and Obstacle

Cutwidth in Tournament

π ∈ V− if ∀u, v ∈ V , d−(u) < d−(v)⇒ u <π v .

My Observation

π ∈ V− ⇒ cw(T , π) = cw(T )

Cutwidth in Tournament ∈ P

Cutwidth in Semi-Complete ∈ NP-Hard?
And-Composition + NP-Hard ⇒ no polynomial kernel

Linear approximation?

k(k−1)
2

|Eπ[k]|

Other arcs

∑k
i=1 d

−(vπ(i))

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 12 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Semi-complete and tournaments
Strong known results
Computing Cutwidth
Certificate and Obstacle

Cutwidth in Tournament

π ∈ V− if ∀u, v ∈ V , d−(u) < d−(v)⇒ u <π v .

My Observation

π ∈ V− ⇒ cw(T , π) = cw(T )

Cutwidth in Tournament ∈ P

Cutwidth in Semi-Complete ∈ NP-Hard?
And-Composition + NP-Hard ⇒ no polynomial kernel

Linear approximation?

k(k−1)
2

|Eπ[k]|

Other arcs

∑k
i=1 d

−(vπ(i))

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 12 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Semi-complete and tournaments
Strong known results
Computing Cutwidth
Certificate and Obstacle

Example

2

5

1

6

4
3

7
0

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 13 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Semi-complete and tournaments
Strong known results
Computing Cutwidth
Certificate and Obstacle

Example

2

5

1

6

4
3

7
0

i 0 1 2 3 4 5 6 7

π(i) 2 5 1 6 4 3 7 0

d−(vπ(i)) 1 1 2 2 5 5 5 7

d−(vπ(i))− i 1 0 0 -1 1 0 -1 0

|Eπ(i)| 1 1 1 0 1 1 0 0
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c-Certificate

A c-certificate is a couple (L,R) of disjoint vertex sets s.t.:

max{|L|, |R|} ≤ c ≤ E (R, L)

max
u∈L

d−(u) ≤ min
v∈R

d−(v)

cw(T ) ≥ c ⇔ T contains a c-certificate
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c-Obstacles

Lemma : existence of small obtacles

If cw(T ) ≥ c , T contains an induced subtournament T ′ s.t.:

cw(T ′) ≥ c ; same c-certificate

|VT ′ | = O(c2) ; all constants are small

Moreover, one can find a c-obstacle T ′ ≺s T in polynomial time.

1-obstacle = triangle; all 2-obstacles have 5 vertices.

Conjecture : |VT ′ | = O(c)
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Cutwidth problems

Inputs : A digraph D = (V ,E ) and an integer k as parameter

c-Cutwidth Vertex Deletion (c-CVD)

Outputs : ∃W ⊆ V , |W | ≤ k , cw(D/W ) ≤ c .

c-Cutwidth Arc Reversal (c-CAR)

Outputs : ∃A ⊆ E , |A| ≤ k , cw(D[
−→
A ]) ≤ c .

Note:

0-CVD = Feedback Vertex Deletion

0-CAR = Feedback Arc Set

CAR ⇔ Cutwidth Arc Deletion + keep semi-complete structure.
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FPT algorithm for Semi-Complete

c-CAR is closed under immersion

1 2 3 4

µ(1) µ(2) x µ(3) y µ(4)

+ Recall that:

Immersion is WQO for semi-complete digraphs.

⇒ Finite number of minimal No-Instances.

Testing if H is immersed in a semi-complete input D is FPT.

⇒ c-CAR in Semi-Complete ∈ FPT non-uniform.
O∗((c + k)O(c+k))-time dynamic programming for c-CARS.
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Branching Rules for c-CVD in Tournament

If T contains a c-obstacle T ′, ∀u ∈ VT ′ branch on (T/u, k − 1).

c-Cutwidth Vertex Deletion in Tournament admits an
O∗(c2k)-time branching algorithm.

Branching Rules for c-CAR in Tournament

If T contains a c-obstacle T ′ with c-certificate (L,R), ∀uv ∈ ET ′

s.t. {u, v} ∩ (L ∪ R) 6= ∅, branch on (T [
−−→
{uv}], k − 1).

c-Cutwidth Arc Reversal in Tournament admits an
O∗(c3k)-time branching algorithm.
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Further Works

Cutwidth Complexity:

NP-Hardness for semi-complete digraphs?
Linear Approximation?

Improving what we have already done:

O(c)-sized c-obstacles? c-obstacles for semi-complete?
Complexity for the described cutwidth problems?
Sub-exponential for FAST

Existence of:

Polynomial kernel?
Linear for FAST

Approximation?
PTAS for FAST

Similar results for Pathwidth and Digraph Minor?

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 20 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Cutwidth problems
FPT Algorithm for Semi-complete
Branching Algorithm for Tournaments
Further Works

Further Works

Cutwidth Complexity:

NP-Hardness for semi-complete digraphs?
Linear Approximation?

Improving what we have already done:

O(c)-sized c-obstacles? c-obstacles for semi-complete?
Complexity for the described cutwidth problems?
Sub-exponential for FAST

Existence of:

Polynomial kernel?
Linear for FAST

Approximation?
PTAS for FAST

Similar results for Pathwidth and Digraph Minor?

Florian Barbero with Christophe Paul, AlGCo Cutwidth in Tournament and Applications 20 / 21



Introduction
Immersion and Cutwidth

Cutwidth in Tournaments
Applications

Cutwidth problems
FPT Algorithm for Semi-complete
Branching Algorithm for Tournaments
Further Works

Further Works

Cutwidth Complexity:

NP-Hardness for semi-complete digraphs?
Linear Approximation?

Improving what we have already done:

O(c)-sized c-obstacles? c-obstacles for semi-complete?
Complexity for the described cutwidth problems?
Sub-exponential for FAST

Existence of:

Polynomial kernel?
Linear for FAST

Approximation?
PTAS for FAST

Similar results for Pathwidth and Digraph Minor?
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Thanks for your attention.
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