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Edge disjoint spanning trees in graphs

Theorem (Tutte 1961, Nash-Williams 1961)
A graph G contains k edge-disjoint spanning trees if and only if

|EG(P)| ≥ k · (|P| − 1)

holds for all partitions P of V (G).

EG(P): set of edges in G between distinct parts of P.
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Arc disjoint branchings in digraphs

Theorem (Edmonds 1973)
For a vertex r of a digraph D there exists k arc-disjoint
branchings with root r if and only if

d+(X ) ≥ k

for every proper subset X of V (D) containing r .

d+(X ): number of arcs in D from some x ∈ X to some y ∈ V (D)−X .
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An intermediate problem

Problem (Thomassé, Egres Open Problems List 2008)

Find a good characterization of the digraphs D such that there
exist edge-disjoint S,T , where S is a spanning tree of UG(D)
and T is an out-branching of D.

UG(D): underlying undirected graph; technically:
same vertices and edges, different incidence relation

Obv. necessary: two edge-disjoint spanning trees in UG(D).
Obv. sufficient: two arc-disjoint out-branchings in D.
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A problem on mixed paths

Let D be a digraph and r ∈ V (D).

If there are edge-disjoint S,T , where
S is a spanning tree of UG(D) and
T is an out-branching of D rooted at r

then for each s∈V (D) there exist edge-disjoint P,Q where
P is an (r , s)-path in UG(D) and Q is an (r , s)-path in D.

Problem (MIXED-EDGE-DISJOINT-PATHS)

Given a digraph D and r , s ∈ V (D),
decide if there exist edge-disjoint P,Q, where
P is an (r , s)-path in UG(D) and Q is an (r , s)-path in D.

Obv. necessary: two edge-disjoint (r , s)-paths in UG(D).
Obv. sufficient: two arc-disjoint (r , s)-paths in D.
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The unmixed versions

Theorem (Menger 1927)

Given two vertices r 6= s of a graph or digraph D, there exist k
edge-disjoint (r , s)-paths if and only if there no (r , s)-cut X with
|X | < k in D.

X an (r , s)-cut: every (r , s)-path in D contains an arc from X .
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The intermediate version is difficult

Theorem (Bang-Jensen & Kriesell 2009)
MIXED-EDGE-DISJOINT-PATHS is NP-complete.
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Mixed homeomorphisms

Let H be a fixed mixed graph and D be any digraph.

A mixed homeomorphism f from H into D maps

each vertex of H to a vertex of D,

each directed edge xy to a nontrivial (f (x), f (y))-path in D, and

each undirected edge xy to a nontrivial (f (x), f (y))-path in
UG(D)

such that

f (x) 6= f (x ′) for x 6= x ′ in V (H) and

Int(f (e)) ∩ f (e′) = ∅ for e 6= e′ in E(H).

In this definition, a cycle through f (x) is considered as
a nontrivial (f (x), f (x))-path with end vertex f (x) in D or UG(D).
Int(f (e)) is the set of all vertices of f (e) except its end(s).
Homeomorphisms from graphs into graphs are defined accordingly.
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A class of homeomorphism extension problems.

Fix a mixed graph H.

Problem (MIXED-HOMEOMORPHISM-EXTENSION)

Given a digraph D and an injection f : V (H)→ V (D), decide if f
extends to a mixed homeomorphism from H into D.

Roughly, we look for a subdivision of H in D, where we fix the
principal vertices and do not care about the direction of the edges of
the subdivision paths or cycles corresponding to undirected edges of
H.
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The undirected case

Fix a graph H.

Problem (HOMEOMORPHISM-EXTENSION)

Given a graph G and an injection f : V (H)→ V (G), decide if f
extends to a homeomorphism from H into G.

To solve this, it is sufficient to solve polynomially many linkage
problems. Each of these takes polynomial time by Graph
Minors XIII (Robertson & Seymour 1995).
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The directed case

Fix a digraph H.

Problem (DIGRAPH-HOMEOMORPHISM-EXTENSION)

Given a digraph D and an injection f : V (H)→ V (D), decide if f
extends to a [mixed] homeomorphism from H to D.

There is a classic dichotomy stating that
DIGRAPH-HOMEOMORPHISM-EXTENSION is solvable in
polynomial time if all edges of H have the same initial vertex or
they all have the same terminal vertex, whereas, in all other
cases, it is NP-complete (Fortune & Hopcroft & Wyllie 1980).
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The general dichotomy

Theorem (Bang-Jensen & Kriesell 2009)

MIXED-HOMEOMORPHISM-EXTENSION for H is in P if
all edges of H are undirected, or
all edges of H are directed and all have the same initial
vertex or all have the same terminal vertex,

and it is NP-complete in all other cases.
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The special case of two cycles

The case that H consists of a directed and an undirected loop
at distinct vertices can be rephrased:

Problem
Given a digraph D and vertices x 6= y, decide if there is a cycle
B in D and a cycle C in UG(D) such that x ∈ V (B), y ∈ V (C),
and V (B) ∩ V (C) = ∅.

The problem is NP-complete — even if we do not prescribe y .

It is likely that this changes if we do neither prescribe y nor x .
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Disjoint cycles in graphs and digraphs

Problem (DISJOINT-CYCLES)
Decide if a given (di)graph G has two disjoint cycles.

In P for graphs by classic results (Lovász 1965, Dirac 1963).

In P for directed graphs (McCuaig 1993); difficult.
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The mixed disjoint cycles problem

Problem (MIXED-DISJOINT-CYCLES)
Decide if, for a given digraph, there exists cycles B in D and C
in UG(D) such that V (B) ∩ V (C) = ∅.

Theorem (Bang-Jensen & Kriesell 2009)
MIXED-DISJOINT-CYCLES restricted to strongly connected
digraphs D is in P, and B,C as there can be found in
polynomial time if they exist.

A vertex v of a non acyclic digraph D is a transversal vertex if
D − v is acyclic.
If v1, v2, . . . , vk are transversal vertices of D, then they occur in
the same order on all dicycles.
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Theorem (Bang-Jensen, Kriesell, Maddaloni & Simonsen,
2014)
For non-strong digraphs with a bounded number of transversal
vertices MIXED-DISJOINT-CYCLES is in P. Without this
restriction the problem is NPC.
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A vault

A strong digraph D with τ(D) = 2 and no pair of disjoint cycle,
dicycle.
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Arc-disjoint cycle and dicycle problem

Problem (MIXED-ARC-DISJOINT-CYCLES)
Decide if, for a given digraph, there exists cycles B in D and C
in UG(D) such that A(B) ∩ A(C) = ∅.

Observation: If a digraph D does not contain a dicycle B and a
cycle C in UG(D) which are arc-disjoint then for every dicycle
B, D − A(B) is an oriented forrest.

Theorem (Bang-Jensen, Kriesell, Maddaloni & Simonsen,
2015)
For strong digraphs and non-strong digraphs with a bounded
number of transversal arcs MIXED-ARC-DISJOINT-CYCLES is in
P. Without this restriction the problem is NPC.
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Mixed cycle-factors in digraphs

Problem (MIXED CYCLE-FACTOR)

Given a digraph D; does UG(D) contain a 2-factor
C1,C2, . . . ,Ck so that C1 is a directed cycle in D?

The non-mixed versions 2-factor in graphs and cycle-factor in
digraphs are well-known polynomial problems.

Theorem (Bang-Jensen & Casselgren, 2015)
MIXED-CYCLE-FACTOR is NPC.
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Solution to Thomassé’s problem

Theorem (Bang-Jensen and Yeo 2010)

The following problem is NP-complete: Given a directed graph
D = (V ,A) and a vertex s ∈ V; does D have an out-branching
B+

s such that UG(D − A(B+
s ) is connected?
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Sketch of proof:

First step: reduce 3-SAT to (s, t)-path in a digraph which avoids
certain vertices.

Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and
clauses C1,C2, . . . ,Cm. The ordering of the clauses
C1,C2, . . . ,Cm induces an ordering of the occurrences of a
variable x and its negation x̄ in these.
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Let W [u, v ,p,q] be the digraph (the variable gadget) with
vertices {u, v , y1, y2, . . . yp, z1, z2, . . . zq} and the arcs of the two
(u, v)-paths uy1y2 . . . ypv ,uz1z2 . . . zqv .

With each variable xi we associate a copy of W [ui , vi ,pi ,qi ]
where xi occurs pi times and x̄i occurs qi times in the clauses
of F . Identify end vertices of these digraphs by setting vi = ui+1
for i = 1,2, . . . ,n − 1. Let s = u1 and t = vn. Denote the
resulting digraph by D′.
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For each clause Cj = {aj,1 ∨ aj,2 ∨ aj,3} we identify aj,i ,
i = 1,2,3 with the vertex corresponding to that litteral in D′.

Easy observation: D′ contains an (s, t)-path P which avoids
at least one vertex from {aj,1,aj,2,aj,3} for each j ∈ [m] if and
only if F is satisfiable.

Jørgen Bang-Jensen Mixed structures in digraphs and completing orientations of partially oriented graphs



a1 a2 a3

b1 b2 b3

c

The clause gadget.
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a11

a12

a13

b11 b12

b13

c1 c2

a21
a22

a23

b23b21

b22

u2 vn

y11

zn1

yn1y21

z21

u1

A schematic picture of DF . Only the chain of variable gadgets
and the clause gadgets corresponding to C1 = (x̄1 ∨ x2 ∨ x̄3)

and C2 = (x̄2 ∨ x̄3 ∨ x4) are shown
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Claim: DF has an out-branching B+
s such that DF − A(B+

s ) is
connected if and only if D′ contains an (s, t)-path P which
avoids at least one vertex from {aj,1,aj,2,aj,3} for each j ∈ [m].

Suppose first that there exists B+
s such that D − A(B+

s ) is
connected. It follows from the structure of DF that the
(s, t)-path P in B+

s lies entirely inside D′ and since tci is the
only arc entering ci , all arcs of the form tci , i ∈ [m] are in B+

s .
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P cannot contain all of {aj,1,aj,2,aj,3} for some clause Cj
because that would disconnect the vertices of
Hj − {aj,1,aj,2,aj,3} from the remaining vertices.

Conversely, suppose that D′ contains an (s, t)-path P which
avoids at least one vertex from {aj,1,aj,2,aj,3} for each j ∈ [m].
Then we form an out-branching B+

s by adding the following
arcs:

all arcs of the form tci , i ∈ [m] and for each clause Cj , j ∈ [m]
and i ∈ [3] if P contains the vertex aj,i we add the arc aj,ibj,i and
otherwise we add the arcs cjbj,i ,bj,iaj,i . This clearly gives an
out-branching B+

s of DF .
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avoids at least one vertex from {aj,1,aj,2,aj,3} for each j ∈ [m].
Then we form an out-branching B+

s by adding the following
arcs:

all arcs of the form tci , i ∈ [m] and for each clause Cj , j ∈ [m]
and i ∈ [3] if P contains the vertex aj,i we add the arc aj,ibj,i and
otherwise we add the arcs cjbj,i ,bj,iaj,i . This clearly gives an
out-branching B+

s of DF .
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It remains to show that D∗ = DF − A(B+
s ) is connected. First

observe that D∗〈V (D′)〉 contains either all arcs of the subpath
uiyi,1yi,2 . . . yi,pi vi or all arcs of the subpath uizi,1zi,2 . . . zi,qi vi for
each i ∈ [n] and hence it contains an (s, t)-path which passes
through all the vertices u1,u2, . . . ,un, t .

By the description of P above, for each clause Cj , j ∈ [m] and
i ∈ [3], if P contains the vertex aj,i then D∗ contains the arcs
cjbj,i , cjaj,i and if P does not contain the vertex aj,i then D∗

contains the arcs cjaj,i ,aj,ibj,i . Now it is easy to see that D∗ is
connected and spanning.
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Further hardness results

Theorem (Bang-Jensen & Yeo, 2010)
It is NP-complete to decide whether a given digraph has an
(s, t)-path P such that D − A(P) is connected for specified
vertices s, t .

Theorem (Bang-Jensen & Yeo, 2010)

It is NP-complete to decide for a given digraph D and distinct
vertices vertex s, t ∈ V (D) whether the underlying graph of D
has an (s, t)-path Q such that D − A(Q) has an out-branching
B+

s rooted at s.

Jørgen Bang-Jensen Mixed structures in digraphs and completing orientations of partially oriented graphs



Theorem (Bang-Jensen & Yeo, 2010)

It is NP-complete to decide for a given strongly connected
digraph D whether D contains a directed cycle C such that
UG(D − A(C)) is connected.

Theorem (Bang-Jensen & Yeo, 2010)

It is NP-complete to decide for a given strongly connected
digraph D whether UG(D) contains a cycle C such that
D − A(C) is strongly connected.
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Theorem (Bang-Jensen & Simonsen, 2013)
It is NP-complete to decide whether a 2-regular digraph D
contains a spanning strong subdigraph D′ such that
UG(D − A(D′′)) is connected.
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FPT algorithm for non disconnecting out-branchings

Problem (NON-DISCONNECTING OUT-BRANCHING)
Given a digraph D and a natural number k; does D have an
out-branching B+

s and a spanning tree T such that
|A(B+

s )− A(T )| ≥ k?

Theorem (Bang-Jensen, Saurabh & Simonsen, 2015)

The problem NON-DISCONNECTING OUT-BRANCHING is fixed
parameter tractable and admits a linear vertex kernel.

Jørgen Bang-Jensen Mixed structures in digraphs and completing orientations of partially oriented graphs



FPT algorithm for non disconnecting out-branchings

Problem (NON-DISCONNECTING OUT-BRANCHING)
Given a digraph D and a natural number k; does D have an
out-branching B+

s and a spanning tree T such that
|A(B+

s )− A(T )| ≥ k?

Theorem (Bang-Jensen, Saurabh & Simonsen, 2015)

The problem NON-DISCONNECTING OUT-BRANCHING is fixed
parameter tractable and admits a linear vertex kernel.

Jørgen Bang-Jensen Mixed structures in digraphs and completing orientations of partially oriented graphs



The orientation completion problem

A partially oriented graph (a pog) P = (V ,E ∪ A) is a mixed
graph consisting of both edges and arcs (possibly E = ∅ or
A = ∅).
By completing the orientation of P we mean assigning an
orientation to each edge e ∈ E .
Let C be a given class of digraphs (e.g. tournament, acyclic,
strong, ...).

Problem (C-ORIENTATION-COMPLETION PROBLEM)

Given a pog P = (V ,E ∪ A); can we complete the orientation
so that the resulting oriented graph D belongs to C?

Common generalization of the recognition problem for C and
the problem of deciding whether a graph is the underlying
graph of some digraph from C.
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Some known results

For a given pog P = (V ,E ∪A) we denote by
↔
P the digraph that

we obtain by replacing each edge uv ∈ E by a directed 2-cycle.

Theorem (Boesch & Tindell, 1980)

A partially oriented graph P = (V ,E ∪ A) can be completed into
a strongly connected oriented graph D if and only if

↔
P is

strongly connected and UG(P) has no bridge. This can be
decided, and a strong orientation found when one exists, in
polynomial time.

Theorem (Fekete, Köhler & Teich, 2000)

The C-ORIENTATION-COMPLETION PROBLEM is polynomially
solvable when C is the class of transitive oriented graphs.
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Completing to get an acyclic digraph with an (s, t)-path

Problem ((s, t)-PATH COMPLETION IN ACYCLIC DIGRAPH)

Input: a partially oriented graph P = (V ,E ∪ A) with two
prescibed vertices s, t . Question: Does there exist a completion
of P to an acyclic digraph with an (s, t)-path?
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Theorem (Bang-Jensen and Kriesell, 2015)

Problem (s, t)-PATH COMPLETION IN ACYCLIC DIGRAPH is
NP-complete.
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A tournament is an orientation of a complete graph. A digraph
is semicomplete if every pair of distinct vertices is joined by an
arc or by two arcs which form a directed 2-cycle.

A digraph D is locally semicomplete if D[N+(v)],D[N−(v)]
are semicomplete for every vertex v . D is a local tournament
if D[N+(v)],D[N−(v)] are tournaments for all vertices v .

A digraph is locally transitive if D[N+(v)],D[N−(v)] are
transitive digraphs for every vertex v .
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A proper circular arc graph is a graph which is the
intersection graph of a family of circular arcs on a circle so that
no such interval is properly contained in any other.

Theorem (Skrien, 1982)
Let G be a connected graph. The following statements are
equivalent:
(a) G can be completed to a local tournament.
(b) G can be completed to a locally transitive local tournament.
(c) G is a proper circular arc graph.
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A proper interval graph is a graph which is the intersection
graph of a family of intervals on the real line so that no such
interval is properly contained in any other.

Theorem (Hell & Huang, 1995)

Let G be a graph. The following statements are equivalent:
1 G can be completed to an acyclic local tournament
2 G is a proper interval graph.
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Orienting a graph as a local tournament

Let G = (V ,E) be a graph. The auxiliary graph G+ of G is
defined as follows. The vertex set of G+ consists of all ordered
pairs (u, v) for all uv ∈ E (note that every edge of G gives rise
to two vertices of G+). Two vertices (u, v) and (u′, v ′) of G+ are
adjacent if and only if one of the following conditions holds:

u = u′ and vv ′ /∈ E ;
uu′ /∈ E and v = v ′;
u = v ′ and v = u′.

Lemma (Huang, 1992)

A graph G is local tournament orientable if and only if G+ is
bipartite. Moreover, when G+ is bipartite, for any two vertices
(u, v), (u′, v ′) of odd distance in G+, a local tournament of G
must contain exactly one of them as an arc. In particular, the
arcs of every local tournament orientation of G correspond to a
colour class of G+.
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orientation completion to a local tournament

Theorem
The orientation completion problem for the class of local
tournaments is polynomial time solvable.

Proof: Let P = (V ,A ∪ E) be a partially oriented graph and let
G = UG(P). The arc set A corresponds to a subset S of the
vertex set of G+. According to the Lemma, P can be completed
to a local tournament if and only if G+ is bipartite and S is
contained in a colour class of G+.
Checking whether G+ is bipartite and in the case when G+ is
bipartite whether S is contained in a colour class of G+ can be
done in polynomial time.
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The representation extension problem for proper
interval graphs

Shorthand for proper interval graph: pig.

Problem (PIG-REPRESENTATION-EXTENSION)

Let G be a proper interval graph and let I ′ be a proper interval
representation of and induced subgraph H of G. Does there
exist a proper interval representation I of G such that I ′ ⊆ I?

Theorem (Klavik, Kratochvil & Vyskocil, 2014)
The problem PIG-REPRESENTATION-EXTENSION is solvable in
polynomial time and we can construct the desired extension in
polynomial time when it exists.
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Proof: We show how to reduce the problem of extending partial
proper interval representations of proper interval graphs to the
orientation completion problem for the class of acyclic local
tournaments.

Suppose that G is a proper interval graph and H is an induced
subgraph of G. Given a proper interval representation
Iv , v ∈ V (H) of H, we obtain an orientation of H in such a way
that (u, v) is an arc if and only if Iu contains the left endpoint of
Iv . The oriented edges together with the remaining edges in G
yield a partial (acyclic) orientation of G.
This partial orientation of G can be completed to an acyclic
local tournament if and only if the partial representation of H
can be extended to a proper interval representation of G.
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Orientation completion to a locally transitive
tournament

Theorem (Bang-Jensen, Huang & Zhu, 2015)

The orientation completion problem for the class of locally
transitive tournaments is NP-complete.

Corollary
It is NP-complete to decide whether a partially oriented
proper-circular arc graph has a completion to a locally transitive
local tournament.
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Representation extension for proper cicular arc graphs

Shorthand for proper circular arc graph: pca.

Problem (PCA-REPRESENTATION-EXTENSION)

Let G be a proper circular arc graph and let C′ be a proper
circular arc representation of and induced subgraph H of G.
Does there exist a proper circular arc representation C of G
such that C′ ⊆ C?

Theorem (Bang-Jensen, Huang & Zhu, 2015)
The PCA-REPRESENTATION-EXTENSION problem is
polynomially solvable and a good extension can be found in
polynomial time when it exists.
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A digraph is an in-tournament if the set of in-neighbours of
every vertex induces a tournament.

Theorem

The orientation completion problem is polynomial for the class
of in-tournaments.

Proposition (Bang-Jensen, Huang & Prisner, 1993)

A graph is chordal if and only if it has an orientation as an
acyclic in-tournament.

Problem
What is the complexity of the orientation completion problem for
the class of acyclic in-tournaments?
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