A Fixed Parameter Tractable Approximation Scheme for the
Optimal Cut Graph of a Surface®

Vincent Cohen-Addad’ Arnaud de Mesmay*

Abstract

Given a graph G cellularly embedded on a surface ¥ of genus g, a cut graph is a subgraph
of G such that cutting ¥ along G yields a topological disk. We provide a fixed parameter
tractable approximation scheme for the problem of computing the shortest cut graph, that
is, for any € > 0, we show how to compute a (14 ¢) approximation of the shortest cut graph
in time f(e, g)n3.

Our techniques first rely on the computation of a spanner for the problem using the
technique of brick decompositions, to reduce the problem to the case of bounded tree-
width. Then, to solve the bounded tree-width case, we introduce a variant of the surface-cut
decomposition of Rué, Sau and Thilikos, which may be of independent interest.

1 Introduction

Embedded graphs are commonly used to model a wide array of discrete structures, and in
many cases it is necessary to consider embeddings into surfaces instead of the plane or the
sphere. For example, many instances of network design actually feature some crossings, coming
from tunnels or overpasses, which are appropriately modeled by a surface of small genus. In
other settings, such as in computer graphics or computer-aided design, we are looking for a
discrete model for objects which inherently display a non-trivial topology (e.g., holes), and
graphs embedded on surfaces are the natural tool for that. From a more theoretical point of
view, the graph structure theorem of Robertson and Seymour showcases a very strong connection
between graphs embedded on surfaces and minor-closed families of graphs.

When dealing with embedded graphs, a classical problem, to which a lot of effort has been
devoted in the past decade, is to find a topological decomposition of the underlying surface,
i.e., to cut the surface into simpler pieces so as to simplify its topology, or equivalently to cut
the embedded graph into a planar graph, see the recent surveys [4l [7]. This is a fundamen-
tal operation in algorithm design for surface-embedded graphs, as it allows to apply the vast
number of tools available for planar graphs to this more general setting. Furthermore, making
a graph planar is useful for various purposes in computer graphics and mesh processing, see
for example [I9]. No matter the application, a crucial parameter is always the length of the
topological decomposition: having good control on it ensures that the meaningful features of
the embedded graphs did not get too much distorted during the cutting.

In this article, we are interested in the problem of computing a short cut graph: For a graph
G with n vertices embedded on a surface ¥ of genus g, a cut graph of G is a subgraph C C G
such that cutting ¥ along C' gives a topological disk. The problem of computing the shortest
possible cut graph of an embedded graph was introduced by Erickson and Har-Peled [§], who

*The research of the second author leading to these results has received funding from the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement n° [291734].

TDépartement d’informatique, Ecole normale supérieure, Paris, France. Email: vcohen@di.ens.fr

HIST Austria, Klosterneuburg, Austria. Email: [arnaud.de.mesmay@ist.ac.at

vcohen@di.ens.fr
arnaud.de.mesmay@ist.ac.at

showed that it is NP-hard, provided an n®) algorithm to compute it, as well as an O(g>nlogn)
algorithm to compute a O(log2 g) approximation. Now, since in most practical applications, the
genus of the embedded graph tends to be quite small compared to the complexity of the graph,
it is natural to also investigate this problem through the lens of parametrized complexity, which
provides a natural framework to study the dependency of cutting algorithms with respect to
the genus. In this direction, Erickson and Har-Peled asked whether computing the shortest
cut graph is fized-parameter tractable, i.e. whether it can be solved in time f (g)no(l) for some
function f. This question is, up to our knowledge, still open, and we address here the neighborly
problem of devising a good approximation algorithm working in fixed parameter tractable time
with respect to the genus; we refer to the survey of Marx [12] for more background on these
algorithms at the intersection of approximation algorithms and parametrized complexity.

Our results. In this article, we provide a fized-parameter tractable approximation scheme for
the problem of computing the shortest cut graph of an embedded graph. Namely, we prove the
following theorem.

Theorem 1.1. Let G be a weighted graph cellularly embedded on a surface ¥ of genus g. For
any € > 0, there exists an algorithm computing a (1+¢€)-approximation of the shortest cut graph
of G, which runs in time f(e,g)n® for some function f.

Our techniques. Our algorithm uses the brick decompositions of Borradaile, Klein and Math-
ieu [3] for subset-connectivity problems in planar graphs, which have been extended to bounded
genus graphs by Borradaile, Demaine and Tazari [2]. Although brick decompositions are now
a common tool for optimization problems for embedded graphs, it is to our knowledge the first
time they are applied to compute topological decompositions. In a nutshell, the idea is the
following;:

1. We first compute a spanner Ggpqn for our problem, namely a subgraph of the input graph
containing a (1 + €)-approximation of the optimal cut graph, and having total length
bounded by f(g,¢) times the length of the optimal cut graph, for some function f. This
is achieved via brick decompositions.

2. Using a result of contraction-decomposition of Demaine, Hajiaghayi and Mohar [6], we
contract a set of edges of controlled length in Ggpan, obtaining a graph Gy, of bounded
tree-width.

3. We use dynamic programming on Gy, to compute its optimal cut graph.

4. We incorporate back the contracted edges, which gives us a subgraph of GG cutting the
surface into one or more disks. Removing edges so that the complement is a single disk
gives our final cut graph.

The first steps of this framework mostly follow from the same techniques as in the article
of Borradaile et al. [2], the only difference being that we need a specific structure theorem to
show that the obtained graph is indeed a spanner for our problem. However, as the restriction
of a cut graph to a brick, i.e., a small disk on the surface, is a forest, this structure theorem is
a variation of an existing theorem for the Steiner tree problem [3].

The main difficulty of this approach lies instead in the third step. Since a cut graph is
inherently a topological notion, it is key for a dynamic programming approach to work with a
tree-decomposition having nice topological properties. An appealing concept has been developed
by Rué, Sau and Thilikos [17] for the neighborly (and for our purpose, equivalent) notion of
branch-decomposition: they introduced surface-cut decompositions with this exact goal of giving
a nice topological structure to work with when designing dynamic programs for graph on surfaces
(see also Bonsma [I] for a related concept). However, their approach is cumbersome for our
purpose when the graph embeddings are not polyhedral (we refer to the introduction for precise
definitions), as it first relies on computing a polyhedral decomposition of the input graph. While

dynamic programming over these polyhedral decompositions can be achieved for the class of
problems that they consider, it seems unclear how to do it for the problem of computing a
shortest cut graph.

We propose two ways to circumvent this issue. In the first one, we observe that the need
for polyhedral embeddings in surface-cut decompositions can be traced back exclusively to a
theorem of Fomin and Thilikos [I7, Lemma 5.1][I0, Theorem 1] relating the branch-width of an
embedded graph and the carving-width of its medial graph, the proof of which uses crucially
that the graph embedding is polyhedral. But another proof of this theorem which does not rely
on this assumption was obtained by Inkmann [I1, Theorem 3.6.1]. Therefore, the full strength
of surface cut decompositions can be used without first relying on polyhedral decompositions.

However, since Inkmann’s proof is intricate and has never been published we also propose
an alternative, self-contained, solution tailored to our problem. For our purpose, it is enough
to make the graph polyhedral at the end of the second step of the framework while preserving
a strong bound on the branch-width of the graph, we show that this can be achieved by super-
posing medial graphs and triangulating with care. With appropriate heavy weights on the new
edges, we can ensure that they do not impact the length of the optimal cut graph and that we
still obtain a valid solution to our problem.

Finally, both approaches allow us to work with a branch decomposition that possesses a nice
topological structure. We then show how to exploit it to write a dynamic program to compute
the shortest cut graph in fixed parameter tractable time for graphs of bounded tree-width.

Organization of the paper. We start by introducing the main notions surrounding embed-
ded graphs and brick decompositions in Section We then prove the structure theorem in
Section (3, showing that the brick decomposition with portals contains a cut graph which is at
most (1+¢) longer than the optimal one. In Section |4] we show how to combine this structure
theorem with the aforementioned framework to obtain our algorithm. This algorithm relies on
one that solves the problem when the input graph has bounded tree-width, which is described
in Section [B

2 Preliminaries

All graphs G = (V, E) in this article are multigraphs, possibly with loops, have n vertices, m
edges, are undirected and their edges are weighted with a length £(e). These weights induce
naturally a length on paths and subgraphs of G.

Graphs on surfaces. We will be using classical notions of graphs embedded on surfaces,
for more background on the subject, we refer to the textbook of Mohar and Thomassen [14].
Throughout the article, 3 will denote a compact connected surface of Euler genus g, which we
will simply call genus. An embedding of G on X is a crossing-free drawing of G on %, i.e.
the images of the vertices are pairwise distinct and the image of each edge is a simple path
intersecting the image of no other vertex or edge, except possibly at its endpoints. We will
always identify an abstract graph with its embedding. A face of the embedding is a connected
component of the complement of the graph. A cellular embedding is an embedding of a
graph where every face is a topological disk. Every embedding in this paper will be assumed
to be cellular. A graph embedding is a triangulation if all the faces have degree three. Euler’s
formula states that for a graph G embedded on a surface ¥, we have n —m + f = 2 — g,
for f the number of faces of the embedding. A noose is an embedding of the circle S' on ¥
which intersects G only at its vertices. An embedding of a graph G on a surface is said to be
polyhedral if G is 3-connected and the smallest length of a non-contractible noose is at least
3 or if G is a clique and it has at most 3 vertices. In particular, a polyhedral embedding is
cellular. If G is a graph embedded on X, the surface ¥’ obtained by cutting ¥ along G is the

disjoint union of the faces of G, it is a (a priori disconnected) surface with boundary. When
we cut a surface along a set of nooses, viewed as a graph, the resulting connected components
will be called regions. A combinatorial map of an embedded graph is the combinatorial
description of its embedding, namely the cyclic ordering of the edges around each vertex.

Given an embedded graph G, the medial graph Mg is the embedded graph obtained by
placing a vertex v, for every edge e of G, and connecting the vertices v, and v, with an edge
whenever e and €’ are adjacent on a face of G. The barycentric subdivision of an embedded
graph G is the embedded graph obtained by adding a vertex on each edge and on each face and
an edge between every such face vertex and its adjacent (original) vertices and edge vertices.

For ¥ a surface and G a graph embedded on ¥, a cut graph of (X, G) is a subgraph H of G
whose unique face is a disk. The length of the cut graph is the sum of the lengths of the edges
of H. Throughout the whole paper, OPT will denote the length of the shortest cut graph of
(%, G).

We refer the reader to [2, [I7] for definitions pertaining to tree decomposition and branch
decomposition. A carving decomposition of a graph G is the analogue of a branch de-
composition with vertices and edges inverted, with the carving-width defined analogously. A
bond carving decomposition is a special kind of carving decomposition where the middle
sets always separate the graph in two connected components. Since these concepts only appear
sporadically in this paper, we refer to [I7] for a precise definition.

Mortar graph and bricks. The framework of mortar graphs and bricks has been developed
by Borradaile, Klein and Mathieu [3] to efficiently compute spanners for subset connectivity
problems in planar graphs. We recall here the main definitions around mortar graphs and
bricks and refer to the articles [2] 3] for more background on these objects.

Let G be a graph embedded on X of genus g. A path P in a graph G is e-short in G if for
every pair of vertices x and y on P, the distance from x to y along P is at most (1 + ¢) times
the distance from z to y in G: distp(z,y) < (1+¢)distg(z,y). For e > 0, let k(g,¢) and a(g,¢)
be functions to be defined later. A mortar graph MG(G,¢) is a subgraph of G such that
{(MG) < aOPT, and the faces of MG partition G into bricks B that satisfy the following
properties:

1. B is planar.

2. The boundary of B is the union of four paths in clockwise order N, E, S, W.

3. N is O-short in B, and every proper subpath of S is e-short in B.

4. There exists a number k < x and vertices sg ... s; ordered from left to right along S such

that, for any vertex x of S[s;, si+1), distg(z, s;) < edistp(z, N).

The mortar graph is computed using a slight variant of the procedure in |2 Theorem 4], the
idea is the following:

1. Cut X along an approximate cut graph, yielding a disk D with boundary 9D.

2. Find shortest paths between certain vertices of dD. This defines the N and S boundaries

of the bricks.

3. Find shortest paths between vertices of the previous paths. These paths are called the

columns.

4. Take every xth path found in the last step. These paths are called the supercolumns

and form the £ and W boundaries of the bricks. The constant & is called the spacing of
the supercolumns.

This leads to the following theorem to compute the mortar graph in time O(g?nlogn).

Theorem 2.1. Let € > 0 and G be a graph embedded on ¥ of genus g. There exists a =
O(log? g1 such that there is a mortar graph MG(G,€) of G such that {(MG) < aOPT and
the supercolumns of MG have length < eOPT with spacing k = O(log® ge=3). This mortar
graph can be found in O(g*nlogn) time.

e

Figure 1: The different stages of the brick decomposition of a graph G, the mortar graph, the
set of bricks and the graph B* (MG, 6).

The proof of Theorem [2.1| relies on the following planar construction of the mortar graph
obtained by Borradaile, Klein and Mathieu [3] (we cite the version of Borradaile, Demaine and
Tazari [2, Theorem 2].)

Theorem 2.2. Let e > 0 and G be a planar graph with outer face H, such that {(H) < agOPT,
for some ag. For o = (2a0+1)e™1, there is a mortar graph M H (G, ¢) containing H whose length
is at most «OPT and whose supercolumns have length eOPT with spacing k = e 2(1+e71).
The mortar graph can be found in O(nlogn) time.

Proof of Theorem [2.1. The proof of this theorem follows closely the one in [2]. The main dif-
ference is that the value of OPT is different, therefore we use a different cutting strategy from
the start.

We first compute an O(log? g) approximation of the optimal cut graph using the algorithm
in of Erickson and Har-Peled [§] and cut along it, to obtain a planar graph H. We can now apply
Theorem [2.2] to H to obtain a mortar graph of H, and it is easy to verify that it is a mortar
graph of G as well. The theorem follows from the bounds of Theorem and the O(log? g)
approximation, the bottleneck of the complexity being the computation of the approximation
of the cut graph. O

3 Structure Theorem

In this section, we prove the structure theorem, which shows that there exists an e-approximation
to the optimal cut graph which only crosses the mortar graph at a small subset of vertices called
portals.

In order to state this theorem, following the literature, we define a brick-copy operation B
as follows. For each brick B, a subset of 8 vertices is chosen as portals such that the distance
along 0B between any vertex and the closest portal is at most ¢(0B)/6. For every brick B,
embed B in the corresponding face of MG and connect every portal of B to the corresponding
vertex of MG with a zero-length portal edge; this defines BY(M@G,60). The edges originating
from MG are called the mortar edges.

We note that by construction, BT (MG,) embeds on the plane in such a way that every
brick of BT(MG,#) is included in the corresponding brick of MG. Furthermore, every vertex
of G corresponds to a vertex of BT (MG, 6) by mapping the insides of bricks to the insides of
bricks in BT (MG, #), and the mortar graph to itself, cf. Figure We denote this map by
i:V(G) = V(BT (MG,0)).

Moreover, we contract the F and W boundaries of each brick of BT (MG, 6) and their copies
in the mortar graph. Since the sum of the length of the F and W boundaries is at most eOPT,
any solution of length ¢ in BT (MG, 0) going through a vertex resulting from a contraction can
be transformed into a solution of length at most ¢ + 2¢OPT in BT (MG,) where no edge is
contracted. The structure theorem is then the following;:

Theorem 3.1. Let G be a graph embedded on ¥ of genus g, and € > 0. Let MG(G,¢) be a
corresponding mortar graph of length at most acOPT and supercolumns of length at most eOPT

with spacing k. There ezists a constant 0(a, e, k) depending polynomially on «,1/e and k such
that:
OPT(BT(MG,0)) < (1+ ce)OPT.

The proof of this theorem essentially consists in plugging in the structure theorem of [3] and
verifying that it fits. Let us first recall the structural theorem of bricks [3]. For a graph H and
a path P C H, a joining vertex of H with P is a vertex in P that lies on an edge of H \ P.

Theorem 3.2. [3, Theorem 10.7] Let B be a brick, and F' be a set of edges of B. There is a
forest F' in B with the following properties:

1. If two vertices of N US are connected by F, they are also connected by ﬁ,

2. The number of joining vertices of F with both N and S is bounded by v(k,¢),

3. 0((F)) < O(F)(1 + ce).
In the above, y(k,e) = o(¢25k) and c is a fived constant.

From this we can deduce the following proposition.

Proposition 3.3. Let C be a subgraph of G of length OPT'. There exists a constant O(a, e, k)
depending polynomially on a,1/e and x and a subgraph C of BY(MG,0) with the following
propertieAs:
o ((C) < (1+4¢é&)l(C)= (14 ¢)OPT, where ¢ is a fixved constant.
o If we denote by D the closed disk on which MG has been constructed, for any two vertices
s,t € OD that are connected by C' in D, i(s) and i(t) are connected by C' in D as well.

Proof. We recall that the interior of every brick B of G can naturally be embedded in the
corresponding brick of BT (MG, 6), therefore, for every brick B, we can identify C' N B with a
subgraph of BT (MG, 6). We define C as follows:

e For every edge of C' which is an edge of the mortar graph MG, we add the corresponding
mortar edge in BT (MG, 6) to C.

e In the inside of every brick B, if F' is the forest induced by C'N B, we define C' N B tobe
the forest defined by F' (as defined in Theorem

e Finally, for every brick B, let Q(B) denote the set of joining vertices of C with NUS. For
every vertex of Q(B) in a brick B, we add to C the path to its closest portal, the copy of
this path in the mortar graph, as well as the corresponding portal edge.

We start by proving the first property. The length of C restricted to B is at most (1+ ce)
times the length of C restricted to B. The length incurred by the portal operation is

> Y <2 e <oy 08
B qeQ(B) B B

By defining # = (¢)ac™! portals, we obtain that the length of C is at most (1+ de)OPT for

some universal constant ¢/, since the length of the mortar graph is at most aOPT.

We now prove the second property. Consider two vertices u,v on 9D that are connected
in C' and let P be the path in C' connecting them. Recall that any vertex that belongs to 9D
belongs to the mortar graph. We decompose P into subpaths crossing at most one brick and
whose extremities lie on the mortar graph. For any such subpath s = {s,...,t} in a brick B,
we show that there exists a path in C' connecting i(s) to i(t). We consider the set of vertices
sp = Q(B) N s. By definition of C, i(s) and i(t) are connected to vertices of sg. Property 1
of Theorem implies that for any couple of vertices of Q(B), if they are connected in C' they
are also connected in C. Therefore, we conclude that i(s) and i(t) are connected and therefore
u and v are also connected.

d

We now have all the tools to prove the structure theorem.

Proof of Theorem[3.1]. Let C be an optimal cut graph of (X, G). We apply Proposition to
C, it yields a subgraph C of BY(MG,6) of length ¢(C) < (1+¢)¢(C). We claim that this graph
C contains a cut graph of X.

Suppose on the contrary that there exists a non-contractible cycle v in (X, BY (MG, 6))
which does not cross C. This cycle v corresponds to a cycle 4/ in (3, G) by contracting portal
edges, and since C' is a cut graph, there exists a maximal subpath P of C restricted to D and a
maximum subpath P’ of 94/ in D such that P’ crosses P an odd number of times, otherwise, by
flipping bigons we could find a cycle homotopic to 4’ not crossing C. Denote by (s,t) and (s, t)
the intersections of P and P’ with D. Then, without loss of generality, s, s', t and ¢’ appear
in this order on dD. Furthermore, the vertices i(s) and i(t) in BT (MG, 6) are connected by C
by Proposition since s and t are connected by C. Therefore, v crosses C , and we reach a
contradiction. O

4 Algorithm

We now explain how to apply the spanner framework of Borradaile et al. in [2] to compute
an approximation of the optimal cut graph. We start by computing the optimal Steiner tree,
for each subset of the portals in every brick by using the algorithm or Erickson, Monma, and
Veinott [9], and then take the union of all these trees over all bricks, plus the edges of the
mortar graph. As this algorithm runs in time O(nk?), this step takes time O, .(n). This defines
the graph Ggpan, which by construction has length < f(g,e)OPT, where f(g,e) = O(2%) =
20(Ilog? g)poly(1/ ¢), and contains a (1+4¢) approximation of the optimal cut graph by the structure
theorem.

We will use the following theorem of Demaine et al. [6, Theorem 1.1] (the complexity of this
algorithm can be improved to Og4(n) [5]).

Theorem 4.1. For a fived genus g, any k > 2 and any graph G of genus at most g, the edges
of G can be partitioned into k sets such that contracting any one of the sets results in a graph
of tree-width at most O(g2k). Furthermore, the partition can be found in time O(g*?n%/?logn)
time.

The four steps of the framework are now the following.

1. Compute the spanner Ggpan-

2. Apply Theorem with k = f(g,€)/e, and contract the edges in the set of the partition

with the least weight. The resulting graph Gy, has tree-width at most O(g%c~'f(g,¢)).

3. Use the bounded tree-width to compute a cut graph of (3, G,). An algorithm to do this

is described in Section Bl

4. Incorporate the contracted edges back. By definition, they have length at most f(g,e)OPT/k =

eOPT. Therefore, the final graph we obtain has the desired length. If the resulting graph
has more than one face, remove edges until we obtain a cut-graph.

We now analyze the complexity of this algorithm. The spanner is computed in time
Ogy(nlogn). Using [5], the second step takes time Og4.(n). Dynamic programming takes time
O,4.-(n?) (see thereafter), and the final lifting step takes linear time. Assuming the dynamic
programming step described in the next section, this proves Theorem

5 Computing cut graphs for bounded tree-width

There remains to prove that computing the optimal cut graph of (X,G) is fixed parameter
tractable with respect to both the tree-width of G and the genus of 3 as a parameter. Out of
convenience, we work with the branch-width instead, which gives the result since they are within

a constant factor [16, Theorem 5.1]. As cut graphs are a topological object, we will rely on
surface-cut decompositions [I7], which are a topological strengthening of branch decompositions.
Note that, for reasons which will be clear later, our definition is slightly different from the one
of Rué, Sau and Thilikos as it does not rely on polyhedral decompositions.

Given a graph G embedded in a surface ¥ of genus G, a surface-cut decomposition of G is a
branch decomposition (T, i) of G such that for each edge e € E(T'), the vertices in mid(e) are
contained in a set A/ of nooses in ¥ such that:

e N[=0(g)

e The nooses in N pairwise intersect only at subsets of mid(e)

e 6(N) = O(g)

e Y\ |JN contains exactly two connected components, of which closures contain respectively

Gl and GQ.
where 6 is defined as follows: for a point p in ¥, if we denote by N (p) the number of nooses in
N containing p, and let P(N) = {p € ¥ | N(p) > 2}, we define

ON)= Y Np) -1
pEP(N)
Rué et al. showed how to compute such a surface-cut decomposition when the input graph G
is embedded polyhedrally on the surface X:

Theorem 5.1 ([17, Theorem 7.2]). Given a graph G on n vertices polyhedrally embedded on a
surface of genus g and with bw(G) < k, one can compute a surface-cut decomposition of G of
width O(g + k) in time 20®)n3.

When the input graph is not polyhedral, Rué et al. propose a more intricate version of
surface-cut decompositions relying on polyhedral decompositions, but it is unclear how to incor-
porate these in a dynamic program to compute optimal cut graphs.

Instead, we present two ways to circumvent polyhedral decompositions and use these surface-
cut decompositions directly. The first one consists of observing that the difficulties involved with
computing surface-cut decompositions of non-polyhedral embeddings can be circumvented by
using a theorem of Inkmann [I1]. Since Inkmann’s theorem has, up to our knowledge, not been
published outside of his thesis, and the proof is quite intricate, for the sake of clarity we also
provide a different approach, based on modifying the input graph to make it polyhedral.

In both cases, we obtain a branch decomposition with a strong topological structure, which
we can then use as a basis for a dynamic program to compute the optimal cut graph.

5.1 A simpler version of surface-cut decompositions

The algorithm [I7, Algorithm 2] behind the proof of Theorem relies on the following steps.
Starting with a polyhedral embedding of G on a surface,

1. Compute a branch decomposition branch(G) of G.

2. Transform branch(G) into a carving decomposition carv(G) of M¢.

3. Transform carv(G) into a bond carving decomposition bond(G) of M.

4. Transform bond(G) into a branch decomposition of G.

The second step is the only one where where the polyhedrality of the embedding is used, as
it relies on the following lemma:

Lemma 5.2 ([I7, Lemma 5.1)). Let G be a polyhedral embedding on a surface ¥ of genus g, and
Mg be the embedding of the medial graph. Then bw(G) < cw(Mg)/2 < 6bw(G)+4g+0(1), and
the corresponding carving decomposition of Mg can be computed from the branch decomposition
of G in linear time.

We observe that the following theorem of Inkmann shows that the branch-width of a surface-
embedded graph and the carving-width of its medial graph are tightly related, even for non-
polyhedral embeddings.

Theorem 5.3 ([II, Theorem 3.6.1]). For every surface ¥ there is a non-negative constant
c(X) such that if G is embedded on ¥ with |E(G)| > 2 and Mg is its medial graph, we have
2bw(G) < cw(M) < 4bw(G) + ¢(X).

Digging into the proof reveals that ¢(X) = O(g?) for ¥ of genus g. The idea is therefore
that replacing Lemma 5.1 of Rué et al. by Theorem allows us to lift the requirement
of polyhedral embedding in their construction. One downside is that this theorem does not
seem to be constructive, and therefore we need an alternative way to compute the carving
decomposition in step 2. This can be achieved in fixed parameter tractable time with respect to
the carving-width (and linear in n) using the algorithm of Thilikos, Serna and Bodlaender [18].
In conclusion, we obtain the following corollary (note that the bottleneck in the complexity is
the same as in the one of Rué et al., which is the transformation between a carving and a bond
carving decomposition).

Corollary 5.4. Given a graph G on n vertices embedded in a surface of genus g with bw(G) < k,
there exists an algorithm running in time Og(n®) computing a surface-cut decomposition (T i)
of G of width at most O(k + g?).

5.2 Making a graph polyhedral

In this section, we show how to go from an embedded graph to a polyhedral embedding, without
increasing the tree-width too much. The construction will be split in the following three lemmas.

Lemma 5.5. Let G be a graph of tree-width at most k > 2, embedded on a surface of genus
g. Then there exists a triangulation of G of tree-width at most k. Moreover, given a tree-
decomposition of width k, one can compute a triangulation of G of tree-width at most k in
polynomial time.

Proof. Let G be the chordal graph containing G having the smallest clique number, i.e., k + 1.
We just observe that G contains a triangulation of G, which will therefore have the same
treewidth as G.

We now show how to compute a triangulation of tree-width k given a tree-decomposition T
of width k. Consider the graph G which consists of G plus all the edges connecting the vertices
u, v that are present in the same bag of 7. By definition of the tree-decomposition, G is chordal
and has the same tree-width than G. Then, for any cycle of GG of length at least 4, there exists
a bag which induces at least one chord, namely such that adding all the edges between the
vertices of the bag creates a chord in the cycle. Therefore, we can proceed greedily and for each
face f of length at least 4 of G, find a bag that contains two non-consecutive vertices of f, add
this edge to GG, embed it in the face and proceed recursively. O

Lemma 5.6. Let G be a triangulated graph of tree-width at most k, embedded on a surface of
genus g. Then its barycentric subdivision B(G) has tree-width at most f(k, g) for some function

f.

Proof. The barycentric subdivision consists of the original vertices of G, the edge vertices and
the face vertices. Let G, be the barycentric subdivision of G restricted to the face and edge
vertices, namely G, consists in the dual of G where each edge is subdivided. Let T'= (X7 ... X},)
be a tree decomposition of G.. By [13], the size of the bags of T is bounded by some function
h(k,g). We consider the tree-decomposition 77 = (X} ...X]) of B(G) obtained by adding
an original vertex to every bag X; containing at least one of its neighbors in its barycentric
subdivision, namely an adjacent face or edge vertex. Since G is triangulated, the size of the
bags is multiplied by at most a constant. Let us prove that 7" is a tree decomposition:

e It contains all the vertices of B(G).

e For every edge, there is a bag containing both endpoints.

e Let X/ and X J’ be two bags containing a vertex v. If v is a face or an edge vertex, every
bag on the path between X; and X} contains it. If it is an original vertex, then X; and X3
both contain a neighbor of v, which we denote by v and vo. Now, if there is a bag X}, on
the path between X/ and X J’ which does not contain v, it does not contain any neighbor
of v either, but it separates v; from v in B(G). We have reached a contradiction.

O]

Lemma 5.7. Let G be a triangulated graph of tree-width at most k, embedded on a surface of
genus g. Let Mg denote the medial graph of G, and G’ the superposition of G and Mq. Then
the tree-width of G’ is bounded by some function of k and g.

Proof. The idea of the proof is the same as for the previous lemma. We start with a tree
decomposition T'= (Xj ... X,) of Mg. Since Mg is the dual of the radial graph of G, which is
contained in the barycentric subdivision of G, by the previous lemma and [I3], the treewidth
of Mg is bounded by some function of k and g. Now, define 7" = (X7 ... X)) by adding every
original vertex in G’ to the bags of T' containing any of its neighbors. The size of the bags at
most triple in size, and let us prove that 7’ is a tree decomposition:

e It contains all the vertices of G'.
e For every edge, there is a bag containing both endpoints.

e Let X! and X j’ be two bags containing a vertex v. If v is a vertex of Mg, every bag on
the path between X/ and X’ contains it. If it is an original vertex, then X and X3 both
contain a neighbor of v, which we denote by v; and vo. Now, if there is a bag X, on the
path between X; and X} which does not contain v, it does not contain any neighbor of v
either, but it separates v from vy in G’. We have reached a contradiction.

O]

Now, we observe that superposing medial graphs two times increases the length of non-
contractible nooses of a graph. Furthermore, if the new edges are weighted heavily enough (e.g.,
with a weight larger than OPT, which we know how to approximate), they will not change the
value of the optimal cut grap}ﬂ Therefore this allows us to assume that the embedded graph
of which we want to compute an optimal cut graph has only non-contractible nooses of length
at least three. By subdividing it to remove loops and multiple edges and triangulating it, we
can also assume that it is 3-connected (since the link of every vertex of a triangulated simple
graph is 2-connected), and therefore that it is polyhedral.

For a polyhedral embedding, our definition of surface-cut decompositions and the one of
Rué et al. [I7] coincide, and therefore we can use their algorithm to compute it.

5.3 Dynamic programming on surface-cut decompositions

We now show how to compute an optimal cut graph of an embedded graph of bounded branch-
width, using surface-cut decompositions. We first recall the following lemma of Erickson and
Har-Peled which follows from Euler’s formula and allows us to bound the complexity of the
optimal cut graph. For a graph H embedded on a region R, we define its reduced graph to be
the embedded graph obtained by repeatedly removing from G the degree 1 vertices which are
not on a boundary and their adjacent edges, and contracting each maximal path through degree
2 vertices to a single edge (weighted as the length of the path).

"When an edge is cut in two halves, the weight is spread in half on each sub-edge.

10

Lemma 5.8 ([8, Lemma 4.2]). Let ¥ be a surface of genus g. Then any reduced cut graph on
> has less than 4g vertices and 6g edges.

The idea is then to compute in a dynamic programming fashion, for every region R of the
surface-cut decomposition, every possible combinatorial map M corresponding to the restriction
of a reduced cut graph of ¥ to R, and every possible position P of the vertices of the boundary
of M on the boundary of R, the shortest reduced graph embedded on R with map M and
position P. The bounds on the size of the boundaries of the region (coming from the definition
of surface-cut decompositions), as well as Lemma allow us to bound the size of the dynamic
tables.

Theorem 5.9. If a graph G of complexity n embedded on a genus g surface has branch-width
at most k, an optimal cut graph of G can be computed in time Ogyk(n:s).

Proof of Theorem [5.9. We start by computing a surface-cut decomposition (T, i) of (X, G) using
either of the algorithms presented in Section [5| and the width of (T, u) is O(g? + k).

Then, our algorithm relies on dynamic programming. For every edge e in the tree of the
surface-cut decomposition, there is a set of nooses N, such that cutting ¥ along N, yields two
connected regions Ry and Ry of ¥. The set of nooses N, contains exactly mid(e) vertices, but
every vertex appearing multiple times in N, gets copied as many times when considered on the
boundary of Ry or Ry. However, since §(N,) = O(g), this only happens O(g) times at most,
and therefore the boundary of Ry (or Rg) contains O(g + mid(e)) = O(g* + k) vertices.

For any region R of the surface-cut decomposition, a reduced cut graph C' of (X, G) induces
a combinatorial map M on R. We denote by M(R) the set of all these maps, for all the reduced
cut graphs of (X, G). For a map M in M(R), the vertices of M on the boundary of R are called
its boundary vertices. Any embedded graph on R with map M induces a matching between the
boundary vertices of M and the vertices on the boundary of R, and the set of all these possible
matchings is called the set P(M, R) of boundary positions of M in R.

The reduced combinatorial map of an embedded graph is the combinatorial map of its reduced
graph. For every region R induced by the surface-cut decomposition, every combinatorial map
M in M(R) and every boundary position P € P(M, R), the dynamic programming tables store
a number T[R, M, P] which is the length of the shortest subgraph of G in R with reduced
combinatorial map M and with boundary positions P. Given a region R and its two subregions
Ry and Ry, the data of the dynamic programming tables of Ry and Ry allow to compute the
table of R by the following formula:

T[R, M, P] = min min T[Rl,Ml,Pl] —|—T[R2,M2,P2],
M1, M2€S(M,R1,Rz2) P1,P2€T (My,Mz,P)
where S(M, Ry, Ry) € M(R1) x M(Ry) is the set of combinatorial maps in Ry and Rg, which
glued together give the map M on R, and T (Mj, My, P) C P(M;i, Ry) x P(Ma, Rs) is the set of
boundary positions of M7 in R; and M> in Ry such that vertices glued together on the boundary
of R; and Ry are mapped to the same vertex and vertices on the boundary of R are mapped
according to P. As usual, the minimum is taken to be infinite if the sets are empty.

We now bound the size of the tables. For a region R, the set M(R) consists of combinatorial
maps having at most 4¢g vertices of degree at least 3 (by Lemma , no vertices of degree 2
(since they have been contracted during the reduction), and vertices of degree 1 only on the
boundary of R. Since the number of vertices on the boundary of R is O(g? + k), the size of
M(R) is bounded by a function of g and k. Similarly, the size of P(M, R) is bounded by a
function depending on the number of boundary vertices of M and R, and thus by a function of
only g and k.

Finally, the length of the optimal reduced cut graph is equal to the minimum of T'[2, M, 0],
where M ranges over all the combinatorial maps of reduced cut graphs on . The number of such
combinatorial maps is bounded a function of g by Lemma The complexity of the dynamic

11

program is therefore Oy j, (n?), where the cubic dependency comes from the computation of the
surface-cut decomposition. Since, when doing a reduction, removing the degree 1 vertices not
on the boundary only reduces the length, the length of the optimal reduced cut graph is the
same as the length of the optimal cut graph. This concludes the proof.

O

Open problems. One of the main challenges is whether the problem of computing the short-
est cut graph can be solved exactly in FPT complexity — the recent application of brick de-
compositions to exact solutions for Steiner problems [I5] might help in this direction. In the
approximability direction, it is also unknown whether there exists a polynomial time constant
factor approximation to this problem, or even a PTAS.

Acknowledgments We are grateful to Sergio Cabello, Eric Colin de Verdiere, Frederic Dorn
and Dimitrios M. Thilikos for very helpful remarks at various stages of the elaboration of this
article.

References

[1] P. BONSMA, Surface split decompositions and subgraph isomorphism in graphs on surfaces,
in Proc. of the Symp. on Theoretical Aspects of Computer Science, STACS ’12, 2012,
pp. 531-542.

[2] G. BORRADAILE, E. D. DEMAINE, AND S. TAZARI, Polynomial-time approzimation
schemes for subset-connectivity problems in bounded-genus graphs, Algorithmica, 68 (2014),
pp. 287-311.

[3] G. BORRADAILE, PH. N. KLEIN, AND C. MATHIEU, An O(nlogn) approzimation scheme
for Steiner tree in planar graphs, ACM Trans. on Algorithms, 5 (2009).

[4] E. COLIN DE VERDIERE, Topological algorithms for graphs on surfaces. Habilitation thesis,
http://www.di.ens.fr/~colin/, 2012.

[5] E. D. DEMAINE, M. HAJIAGHAYI, AND K.-1. KAWARABAYASHI, Contraction decomposi-
tion in h-minor-free graphs and algorithmic applications, in Proc. of the ACM Symp. on
Theory of Computing, STOC 11, ACM, 2011, pp. 441-450.

[6] E. D. DEMAINE, M. HAJIAGHAYI, AND B. MOHAR, Approzimation algorithms via con-
traction decomposition, Combinatorica, (2010), pp. 533-552.

[7] J. ERICKSON, Combinatorial optimization of cycles and bases, in Computational topology,
A. Zomorodian, ed., Proc. of Symp. in Applied Mathematics, AMS, 2012.

[8] J. ERICKSON AND S. HAR-PELED, Optimally cutting a surface into a disk, Discrete &
Computational Geometry, 31 (2004), pp. 37-59.

9] R. E. EricksoN, C. L. MoNMA, AND A. F. VEINOTT, JR, Send-and-split method
for minimum-concave-cost network flows, Mathematics of operations research, 12 (1987),
pp. 634-664.

[10] F. V. FoMIN AND D. M. THILIKOS, On self duality of pathwidth in polyhedral graph
embeddings, Journal of Graph Theory, 55 (2007), pp. 42-54.

[11] T. INKMANN, Tree-based decompositions of graphs on surfaces and applications to the Trav-
eling Salesman Problem, PhD thesis, Georgia Inst. of Technology, 2007.

12

http://www.di.ens.fr/~colin/

[12]

[13]

[14]

[15]

[16]

[17]

D. MARX, Parameterized complezity and approzimation algorithms, The Computer Jour-
nal, 51 (2008), pp. 60-78.

F. MaAzoir, Tree-width of hypergraphs and surface duality, J. Comb. Theory, Ser. B, 102
(2012), pp. 671-687.

B. MoHAR AND C. THOMASSEN, Graphs on surfaces, Johns Hopkins Studies in the Math-
ematical Sciences, Johns Hopkins University Press, 2001.

M. PiLipczuk, M. PILIPCZUK, P. SANKOWSKI, AND E. J. VAN LEEUWEN, Network
sparsification for steiner problems on planar and bounded-genus graphs, in Proceedings of
Foundations of Computer Science (FOCS), 2014, pp. 276-285.

N. ROBERTSON AND P. SEYMOUR, Graph minors. X. obstructions to tree-decomposition,
J. Combin. Theory Ser. B, 52 (1991), pp. 153 — 190.

J. RUE, 1. SAU, AND D. M. THILIKOS, Dynamic programming for graphs on surfaces,
ACM Trans. Algorithms, 10 (2014), pp. 8:1-8:26.

D. THILIKOS, M. SERNA, AND H. BODLAENDER, Constructive linear time algorithms for
small cutwidth and carving-width, in Algorithms and Computation, vol. 1969 of LNCS,
Springer Berlin Heidelberg, 2000, pp. 192-203.

Z. Woob, H. HopPE, M. DESBRUN, AND P. SCHRODER, Removing excess topology from
isosurfaces, ACM Transactions on Graphics, 23 (2004), pp. 190-208.

13

	Introduction
	Preliminaries
	Structure Theorem
	Algorithm
	Computing cut graphs for bounded tree-width
	A simpler version of surface-cut decompositions
	Making a graph polyhedral
	Dynamic programming on surface-cut decompositions

