The Parameterized Complexity of Finding Paths with Shared Edges

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge

TU Berlin

October 14, 2015
VIP-Routing

Tegel

Bundestag
VIP-Routing

Tegel

Bundestag
VIP-Routing

Tegel

Bundestag
The Problem

Problem: Minimum Shared Edges (MSE)

Input: A simple, undirected graph \(G = (V, E) \), \(s, t \in V \), and two integers \(p \in \mathbb{N} \) and \(k \in \mathbb{N}_0 \).

Question: Are there \(p \) s-t paths in \(G \) that share at most \(k \) edges?
The Problem

Are there $p = 3$ s-t paths in G that share at most $k = 2$ edges?
The Problem

Are there $p = 3$ paths in G that share at most $k = 2$ edges?

G

s a b c d e t

G'

s a b c d e t

T

s a b c d e t
The Problem

Are there three paths in G that share at most two edges?
The Problem

Are there $p = 3$ paths in G that share at most $k = 2$ edges?

Till Fluschnik, TU Berlin
Related Work

<table>
<thead>
<tr>
<th>Who</th>
<th>Problem</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omran et al.</td>
<td>MSE on directed graphs</td>
<td>NP-hard; $W[2]$-hard wrt. k</td>
</tr>
</tbody>
</table>

[Li et al. ’13]

Aoki et al. [COCOA ’14]
Related Work

<table>
<thead>
<tr>
<th>Who</th>
<th>Problem</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omran et al.</td>
<td>MSE on directed graphs</td>
<td>NP-hard; $W[2]$-hard wrt. k</td>
</tr>
<tr>
<td>[JCOMB ’13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ye et al.</td>
<td>MSE on undirected graphs</td>
<td>solvable in $p^{f(tw)} \cdot n^{O(1)}$ time</td>
</tr>
<tr>
<td>[FCS ’13]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related Work

<table>
<thead>
<tr>
<th>Who</th>
<th>Problem</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omran et al.</td>
<td>MSE on directed graphs</td>
<td>NP-hard; $W[2]$-hard wrt. k</td>
</tr>
<tr>
<td>[JCOMB ’13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ye et al.</td>
<td>MSE on undirected graphs</td>
<td>solvable in $p^{f(tw)} \cdot n^{O(1)}$ time</td>
</tr>
<tr>
<td>[FCS ’13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aoki et al.</td>
<td>Minimum Vulnerability on undirected graphs</td>
<td>solvable in $p^{f(tw)} \cdot n^{O(1)}$ time; $MV(p)$ is FPT on chordal graphs</td>
</tr>
<tr>
<td>[COCOA ’14]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.
Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>$XP / W[2]$-hard</td>
<td>Reduction from SET COVER</td>
</tr>
</tbody>
</table>
Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>XP / W[2]-hard</td>
<td>Reduction from Set Cover</td>
</tr>
<tr>
<td>(tw)</td>
<td>XP / W[1]-hard</td>
<td>Reduction from Multicolored Clique+</td>
</tr>
</tbody>
</table>

+ to appear in Proc. FSTTCS 2015
Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>XP / (W[2])-hard</td>
<td>Reduction from Set Cover</td>
</tr>
<tr>
<td>tw</td>
<td>XP / (W[1])-hard</td>
<td>Reduction from Multicolored Clique$^+$</td>
</tr>
<tr>
<td>(p, k)</td>
<td>FPT</td>
<td>Branching Algorithm with running time in ((p - 1)^k \cdot O(</td>
</tr>
</tbody>
</table>

$^+$ to appear in Proc. FSTTCS 2015
Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>XP / $W[2]$-hard</td>
<td>Reduction from Set Cover</td>
</tr>
<tr>
<td>tw</td>
<td>XP / $W[1]$-hard</td>
<td>Reduction from Multicolored Clique $^+$</td>
</tr>
<tr>
<td>(p, k)</td>
<td>FPT</td>
<td>Branching Algorithm with running time in $(p - 1)^k \cdot O(</td>
</tr>
<tr>
<td>(p, tw)</td>
<td>FPT</td>
<td>Ye et al. [FCS ’13], Aoki et al. [COCOA ’14]</td>
</tr>
</tbody>
</table>

$^+$ to appear in Proc. FSTTCS 2015
Theorem

Minimum Shared Edges is *NP-complete*, even on graphs of maximum degree five.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>XP / $W[2]$-hard</td>
<td>Reduction from Set Cover</td>
</tr>
<tr>
<td>tw</td>
<td>XP / $W[1]$-hard</td>
<td>Reduction from Multicolored Clique $^+$</td>
</tr>
<tr>
<td>(p, k)</td>
<td>FPT</td>
<td>Branching Algorithm with running time in $(p - 1)^k \cdot O(</td>
</tr>
<tr>
<td>(p, tw)</td>
<td>FPT</td>
<td>Ye et al. [FCS ’13],</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aoki et al. [COCOA ’14]</td>
</tr>
<tr>
<td>p</td>
<td>FPT</td>
<td>Details now $^+$</td>
</tr>
</tbody>
</table>

$^+$ to appear in Proc. FSTTCS 2015
Results

Theorem

Minimum Shared Edges is NP-complete, even on graphs of maximum degree five.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complexity</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>XP / $W[2]$-hard</td>
<td>Reduction from Set Cover</td>
</tr>
<tr>
<td>tw</td>
<td>XP / $W[1]$-hard</td>
<td>Reduction from Multicolored Clique +</td>
</tr>
<tr>
<td>(p, k)</td>
<td>FPT</td>
<td>Branching Algorithm with running time in $(p - 1)^k \cdot O(</td>
</tr>
<tr>
<td>(p, tw)</td>
<td>FPT</td>
<td>Ye et al. [FCS ’13], Aoki et al. [COCOA ’14]</td>
</tr>
<tr>
<td>p</td>
<td>FPT</td>
<td>Details now +</td>
</tr>
</tbody>
</table>

+ to appear in Proc. FSTTCS 2015
MSE\((p)\) is FPT.

Theorem

Minimum Shared Edges is fixed-parameter tractable with respect to the number \(p\) of paths.
Strategy of Proving “MSE(p) is FPT”

Instance: (G, s, t, p, k)
Strategy of Proving \("\text{MSE}(p)\) is FPT\)
Strategy of Proving “MSE(\(p\)) is FPT”

Instance: \((G, s, t, p, k)\)

Treewidth reduction technique

\[\text{Till Fluschnik, TU Berlin} \]
The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let \(G \) be a graph, \(T \subseteq V(G) \), and let \(\ell \) be an integer. Let \(C \) be the set of all vertices of \(G \) participating in a minimal \(s\text{-}t \) separator of size at most \(\ell \) for some \(s, t \in T \).

The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^* having the following properties:
The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^* having the following properties:

1. $C \cup T \subseteq V(G^*)$
The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^* having the following properties:

1. $C \cup T \subseteq V(G^*)$
2. For every $s, t \in T$, a set $L \subseteq V(G^*)$ with $|L| \leq \ell$ is a minimal s-t separator of G^* if and only if $L \subseteq C \cup T$ and L is a minimal s-t separator of G.
The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^* having the following properties:

1. $C \cup T \subseteq V(G^*)$
2. For every $s, t \in T$, a set $L \subseteq V(G^*)$ with $|L| \leq \ell$ is a minimal s-t separator of G^* if and only if $L \subseteq C \cup T$ and L is a minimal s-t separator of G.
3. The treewidth of G^* is at most $h(\ell, |T|)$ for some function h.
The Treewidth Reduction Technique

Theorem (Marx et al. [TALG ’13, Theorem 2.15])

Let G be a graph, $T \subseteq V(G)$, and let ℓ be an integer. Let C be the set of all vertices of G participating in a minimal s-t separator of size at most ℓ for some $s, t \in T$. For every fixed ℓ and $|T|$, there is a linear-time algorithm that computes a graph G^* having the following properties:

1. $C \cup T \subseteq V(G^*)$

2. For every $s, t \in T$, a set $L \subseteq V(G^*)$ with $|L| \leq \ell$ is a minimal s-t separator of G^* if and only if $L \subseteq C \cup T$ and L is a minimal s-t separator of G.

3. The treewidth of G^* is at most $h(\ell, |T|)$ for some function h.

4. $G^*[C \cup T]$ is isomorphic to $G[C \cup T]$.

Till Fluschnik, TU Berlin
The Treewidth Reduction Technique

$T = \{s, t\}, \ell = 2$
The Treewidth Reduction Technique

\[T = \{s, t\}, \ell = 2 \]
The Treewidth Reduction Technique

\[T = \{s, t\}, \ell = 2 \]
The Treewidth Reduction Technique

\[T = \{s, t\}, \ell = 2 \]
The Treewidth Reduction Technique

\[T = \{s, t\}, \ell = 2 \]
The Treewidth Reduction Technique

$$T = \{s, t\}, \ell = 2$$
Strategy of Proving “MSE(p) is FPT”

Instance: \((G, s, t, p, k)\)

Treewidth reduction technique with

\(T = \{s, t\} \text{ and } \ell = p - 1.\)
Strategy of Proving “\(\text{MSE}(p) \) is FPT”

Instance: \((G, s, t, p, k)\)

1. **Subdivisions**
2. **Treewidth reduction technique** with \(T = \{s, t\}\) and \(\ell = p - 1\).

\[\text{Instance: } (G^*, s, t, p, k) \]

\[\text{is solvable in FPT-time wrt. } p \]

\[\text{is yes-instance if and only if } (G, s, t, p, k) \text{ is yes-instance.} \]
Strategy of Proving “MSE(p) is FPT”

Instance: \((G, s, t, p, k)\)

Subdivisions

\(G \rightarrow H \rightarrow H^* \rightarrow \ldots \rightarrow G^*\)

Treewidth reduction technique with
\(T = \{s, t\}\) and
\(\ell = p - 1.\)
Strategy of Proving “MSE\((p)\) is FPT”

Instance: \((G, s, t, p, k)\)

- Subdivisions
 \(G \rightarrow H\)

- Treewidth reduction technique with
 \(T = \{s, t\}\) and
 \(\ell = p - 1\).

- Contractions
 \(H^* \rightarrow G^*\)

Till Fluschnik, TU Berlin
From G to G^* (with $\ell = p - 1 = 2$)
From G to G^* (with $\ell = p - 1 = 2$)
From G to G^* (with $\ell = p - 1 = 2$)

G

$s \quad a \quad b \quad t$

$c \quad d \quad e$

H

$s \quad a \quad b \quad t$

$c \quad d \quad e$

H^*

$s \quad a \quad b \quad t$

$c \quad d \quad e$

Subdivisions

TWRT

X_{bc}

X_{bc}

X_{bc}

X_{bc}
From G to G^* (with $\ell = p - 1 = 2$)
Strategy of Proving “MSE(p) is FPT”

Instance: (G, s, t, p, k)

Subdivisions

Treewidth reduction technique with
$T = \{s, t\}$ and
$
\ell = p - 1.
$

Contractions

$G \xrightarrow{\text{Subdivisions}} H \xrightarrow{} H^* \xrightarrow{} G^*$

Strategy of Proving “MSE(p) is FPT”

Instance: (G, s, t, p, k)

- Subdivisions
- Contractions
- Treewidth reduction technique with $T = \{s, t\}$ and $\ell = p - 1$.

- $\text{tw}(G^*) \leq h(p)$
- 1-to-1 correspondence of all minimal s-t cuts of size $\leq p - 1$ of G and G^*.

G \quad H \quad H^* \quad G^*
Strategy of Proving “MSE(p) is FPT”

Instance: (G, s, t, p, k)

- Subdivisions

- Treewidth reduction technique with
 $T = \{s, t\}$ and
 $\ell = p - 1$.

- Constructions

- $\text{tw}(G^*) \leq h(p)$
- 1-to-1 correspondence of all minimal s-t cuts of size
 $\leq p - 1$ of G and G^*.

Instance: (G^*, s, t, p, k)
- is solvable in FPT-time wrt. p
- using a dynamic program.
Strategy of Proving “MSE(p) is FPT”

Instance: \((G, s, t, p, k)\)

- Subdivisions
- Treewidth reduction technique with
 \(T = \{s, t\}\) and
 \(\ell = p - 1.\)

- Contractions
- \(\text{tw}(G^*) \leq h(p)\)
- 1-to-1 corresp. of all minimal \(s-t\) cuts of size \(\leq p - 1\) of \(G\) and \(G^*\).

Instance: \((G^*, s, t, p, k)\)

- is solvable in FPT-time wrt. \(p\)
- using a dynamic program.
- is yes-instance if and only if \((G, s, t, p, k)\) is yes-instance.
Strategy of Proving “MSE(p) is FPT”

Instance: \((G, s, t, p, k)\)

Subdivisions

\(G\) → \(H\) → \(H^*\) → \(G^*\)

- **Treewidth reduction technique** with
 \(T = \{s, t\}\) and
 \(\ell = p - 1\).

Contractions

Instance: \((G^*, s, t, p, k)\)

- is solvable in FPT-time wrt. \(p\)
 using a dynamic program.
- is yes-instance if and only if
 \((G, s, t, p, k)\) is yes-instance.

- \(\text{tw}(G^*) \leq h(p)\)
- 1-to-1 corresp. of all minimal \(s-t\) cuts of size \(\leq p - 1\) of \(G\) and \(G^*\).
Conclusion and Remarks

- **MSE** is NP-hard even if maximum degree $\Delta = 5$.

 Ongoing work indicates that **MSE** remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?

 MSE(k) is $W[2]$-hard, **MSE**(tw) is $W[1]$-hard, **MSE**(p) is FPT.

 $MSE(p)$ does not admit a polynomial problem kernel (unless $\text{NP} \subseteq \text{coNP}/\text{poly}$).

 Our approach requires the combined use of the treewidth reduction technique and dynamic programming.

 \Rightarrow Running times are of theoretical interest only. Challenge: improve the running time.

- Further research: complexity of **MSE** on special planar graphs, e.g. grids with holes.
Conclusion and Remarks

- **MSE** is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that **MSE** remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
Conclusion and Remarks

- MSE is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that MSE remains NP-hard on planar graphs with $\Delta = 4$. **Open**: $\Delta = 3$?
- $\text{MSE}(k)$ is $W[2]$-hard, $\text{MSE}(\text{tw})$ is $W[1]$-hard, $\text{MSE}(p)$ is FPT.
Conclusion and Remarks

- **MSE** is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that **MSE** remains NP-hard on planar graphs with $\Delta = 4$. Open: $\Delta = 3$?
- **MSE(k)** is $W[2]$-hard, **MSE**(tw) is $W[1]$-hard, **MSE(p)** is FPT.
- **MSE(p)** does not admit a polynomial problem kernel (unless $NP \subseteq coNP/poly$).
Conclusion and Remarks

- **MSE** is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that **MSE** remains NP-hard on planar graphs with $\Delta = 4$. **Open**: $\Delta = 3$?
- **MSE**(\(k\)) is $W[2]$-hard, **MSE**(tw) is $W[1]$-hard, **MSE**(\(p\)) is FPT.
 - **MSE**(\(p\)) does not admit a polynomial problem kernel (unless $\text{NP} \subseteq \text{coNP/poly}$).
- Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
Conclusion and Remarks

- **MSE** is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that **MSE** remains NP-hard on planar graphs with $\Delta = 4$. **Open**: $\Delta = 3$?
- **MSE(k)** is $W[2]$-hard, **MSE(tw)** is $W[1]$-hard, **MSE(p)** is FPT.
 - **MSE(p)** does not admit a polynomial problem kernel (unless $\text{NP} \subseteq \text{coNP/poly}$).
- Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
- Running times are of theoretical interest only.
 - **Challenge**: improve the running time.
Conclusion and Remarks

- **MSE** is NP-hard even if maximum degree $\Delta = 5$.
- Ongoing work indicates that **MSE** remains NP-hard on planar graphs with $\Delta = 4$. **Open**: $\Delta = 3$?
- **MSE(k)** is $W[2]$-hard, **MSE(tw)** is $W[1]$-hard, **MSE(p)** is FPT.
- **MSE(p)** does not admit a polynomial problem kernel (unless $\text{NP} \subseteq \text{coNP/poly}$).
 - Our approach requires the combined use of the treewidth reduction technique and dynamic programming.
 - Running times are of theoretical interest only.
 - **Challenge**: improve the running time.
- Further **research**: complexity of **MSE** on *special* planar graphs, e.g. grids with holes.
Thank you.
Yusuke Aoki, Bjarni V. Halldórsson, Magnús M. Halldórsson, Takehiro Ito, Christian Konrad, and Xiao Zhou.
The minimum vulnerability problem on graphs.
In Zhang et al. [ZWXD14], pages 299–313.

Dániel Marx, Barry O’Sullivan, and Igor Razgon.
Finding small separators in linear time via treewidth reduction.

Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh.
Finding paths with minimum shared edges.

Z.Q. Ye, Y.M. Li, H.Q. Lu, and X. Zhou.
Finding paths with minimum shared edges in graphs with bounded treewidths.