FPT results through potential maximal cliques

Fedor V. Fomin – University of Bergen Mathieu Liedloff – Université d'Orléans <u>Pedro Montealegre</u> – Université d'Orléans Ioan Todinca– Université d'Orléans

Abstract:

In many graph problems, like LONGEST INDUCED PATH, MAXIMUM INDUCED FOREST, etc., we are given as input a graph G and the goal is to compute a largest induced subgraph G[F], of treewidth at most a constant t, and satisfying some property \mathcal{P} . Fomin et al. [1] proved that this generic problem is polynomial on the class of graphs \mathcal{G}_{poly} , i.e., the graphs having at most poly(n)minimal separators for some polynomial poly, when property \mathcal{P} is expressible in counting monadic second order logic (CMSO). The algorithm is based on the enumeration of potential maximal cliques.

Here we extend this result in two directions:

- The generic problem can be solved in time $\mathcal{O}^*(4^{\text{vc}})$ or $\mathcal{O}^*(1.7347^{\text{mw}})$, where vc and mw correspond to the *vertex cover* and the *modular width* of the input graph.
- Consider the class $\mathcal{G}_{\text{poly}} + kv$, formed by graphs of $\mathcal{G}_{\text{poly}}$ to which we may add a set of at most k vertices with arbitrary adjacencies, called *modulator*. We prove that the generic optimization problem is fixed parameter tractable on $\mathcal{G}_{\text{poly}} + kv$, with parameter k, if the modulator is also part of the input.

References

 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations and CMSO. In SIAM, editor, *Proceedings of SODA 2014*, 2014. See also http://arxiv.org/abs/1309.1559.