FPT results through potential maximal cliques

Fedor V. Fomin - University of Bergen
Mathieu Liedloff - Université d'Orléans
Pedro Montealegre - Université d'Orléans
Ioan Todinca- Université d'Orléans

Abstract

: In many graph problems, like Longest Induced Path, Maximum Induced Forest, etc., we are given as input a graph G and the goal is to compute a largest induced subgraph $G[F]$, of treewidth at most a constant t, and satisfying some property \mathcal{P}. Fomin et al. [1] proved that this generic problem is polynomial on the class of graphs $\mathcal{G}_{\text {poly }}$, i.e., the graphs having at most poly (n) minimal separators for some polynomial poly, when property \mathcal{P} is expressible in counting monadic second order logic (CMSO). The algorithm is based on the enumeration of potential maximal cliques.

Here we extend this result in two directions:

- The generic problem can be solved in time $\mathcal{O}^{*}\left(4^{\mathrm{vc}}\right)$ or $\mathcal{O}^{*}\left(1.7347^{\mathrm{mw}}\right)$, where vc and mw correspond to the vertex cover and the modular width of the input graph.
- Consider the class $\mathcal{G}_{\text {poly }}+k v$, formed by graphs of $\mathcal{G}_{\text {poly }}$ to which we may add a set of at most k vertices with arbitrary adjacencies, called modulator. We prove that the generic optimization problem is fixed parameter tractable on $\mathcal{G}_{\text {poly }}+k v$, with parameter k, if the modulator is also part of the input.

References

[1] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations and CMSO. In SIAM, editor, Proceedings of SODA 2014, 2014. See also http://arxiv.org/abs/1309.1559.

