On the Parameterized Complexity of Finding Paths with Shared Edges

Till Fluschnik – TU Berlin

Abstract:

We study the Minimum Shared Edges (MSE) problem on undirected graphs. Given an undirected graph, a source and a sink vertex, and two integers p and k, the question is whether there are p paths in the graph connecting the source with the sink that share at most k edges. Herein, an edge is shared if it appears in at least two paths. Complementing an NP-hardness result for the directed variant, we show that MSE is NP-complete even on planar graphs. Further, we show that MSE is W[2]-hard when parameterized by the number k of shared edges and W[1]-hard when parameterized by the treewidth. On the positive side, we show that MSE is fixed-parameter tractable with respect to the number p of paths. For the latter result, we employ the so-called treewidth reduction technique due to Marx, O'Sullivan and Razgon [1].

The talk is based on a joint work with Stefan Kratsch, Rolf Niedermeier and Manuel Sorge.

References

 D. Marx, B. O'Sullivan, and I. Razgon. Finding small separators in linear time via treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013.